Definition 10.84.1. Let $M$ be an $R$-module. A direct sum dévissage of $M$ is a family of submodules $(M_{\alpha })_{\alpha \in S}$, indexed by an ordinal $S$ and increasing (with respect to inclusion), such that:
$M_0 = 0$;
$M = \bigcup _{\alpha } M_{\alpha }$;
if $\alpha \in S$ is a limit ordinal, then $M_{\alpha } = \bigcup _{\beta < \alpha } M_{\beta }$;
if $\alpha + 1 \in S$, then $M_{\alpha }$ is a direct summand of $M_{\alpha + 1}$.
If moreover
$M_{\alpha + 1}/M_{\alpha }$ is countably generated for $\alpha + 1 \in S$,
then $(M_{\alpha })_{\alpha \in S}$ is called a Kaplansky dévissage of $M$.
Comments (0)
There are also: