Lemma 10.82.5. Let $M$ be an $R$-module. Then $M$ is flat if and only if any exact sequence of $R$-modules
\[ 0 \to M_1 \to M_2 \to M \to 0 \]
is universally exact.
Lemma 10.82.5. Let $M$ be an $R$-module. Then $M$ is flat if and only if any exact sequence of $R$-modules
is universally exact.
Proof. This follows from Lemma 10.81.3 and Theorem 10.82.3 (5). $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: