Lemma 10.81.1. Let $M$ be an $R$-module. The following are equivalent:
$M$ is flat.
If $f: R^ n \to M$ is a module map and $x \in \mathop{\mathrm{Ker}}(f)$, then there are module maps $h: R^ n \to R^ m$ and $g: R^ m \to M$ such that $f = g \circ h$ and $x \in \mathop{\mathrm{Ker}}(h)$.
Suppose $f: R^ n \to M$ is a module map, $N \subset \mathop{\mathrm{Ker}}(f)$ any submodule, and $h: R^ n \to R^{m}$ a map such that $N \subset \mathop{\mathrm{Ker}}(h)$ and $f$ factors through $h$. Then given any $x \in \mathop{\mathrm{Ker}}(f)$ we can find a map $h': R^ n \to R^{m'}$ such that $N + Rx \subset \mathop{\mathrm{Ker}}(h')$ and $f$ factors through $h'$.
If $f: R^ n \to M$ is a module map and $N \subset \mathop{\mathrm{Ker}}(f)$ is a finitely generated submodule, then there are module maps $h: R^ n \to R^ m$ and $g: R^ m \to M$ such that $f = g \circ h$ and $N \subset \mathop{\mathrm{Ker}}(h)$.
Comments (0)