The Stacks project

A module over a ring has empty support if and only if it is the trivial module.

Lemma 10.40.2. Let $R$ be a ring. Let $M$ be an $R$-module. Then

\[ M = (0) \Leftrightarrow \text{Supp}(M) = \emptyset . \]

Proof. Actually, Lemma 10.23.1 even shows that $\text{Supp}(M)$ always contains a maximal ideal if $M$ is not zero. $\square$


Comments (1)

Comment #880 by on

Suggested slogan: A module over a ring has empty support if and only if it is the trivial module.

There are also:

  • 2 comment(s) on Section 10.40: Supports and annihilators

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0585. Beware of the difference between the letter 'O' and the digit '0'.