Lemma 37.23.4. Let $f : X \to S$ be a morphism of schemes. Let $x \in X$ be a point with image $s \in S$. Assume
$f$ is locally of finite presentation,
$f$ is Cohen-Macaulay at $x$, and
$x$ is a closed point of $X_ s$.
[IV Proposition 17.16.1, EGA]
Lemma 37.23.4. Let $f : X \to S$ be a morphism of schemes. Let $x \in X$ be a point with image $s \in S$. Assume
$f$ is locally of finite presentation,
$f$ is Cohen-Macaulay at $x$, and
$x$ is a closed point of $X_ s$.
Then there exists a regular immersion $Z \to X$ containing $x$ such that
$Z \to S$ is flat and locally of finite presentation,
$Z \to S$ is locally quasi-finite, and
$Z_ s = \{ x\} $ set theoretically.
Proof. We may and do replace $S$ by an affine open neighbourhood of $s$. We will prove the lemma for affine $S$ by induction on $d = \dim _ x(X_ s)$.
The case $d = 0$. In this case we show that we may take $Z$ to be an open neighbourhood of $x$. (Note that an open immersion is a regular immersion.) Namely, if $d = 0$, then $X \to S$ is quasi-finite at $x$, see Morphisms, Lemma 29.29.5. Hence there exists an affine open neighbourhood $U \subset X$ such that $U \to S$ is quasi-finite, see Morphisms, Lemma 29.56.2. Thus after replacing $X$ by $U$ we see that the fibre $X_ s$ is a finite discrete set. Hence after replacing $X$ by a further affine open neighbourhood of $X$ we see that $f^{-1}(\{ s\} ) = \{ x\} $ (because the topology on $X_ s$ is induced from the topology on $X$, see Schemes, Lemma 26.18.5). This proves the lemma in this case.
Next, assume $d > 0$. Note that because $x$ is a closed point of its fibre the extension $\kappa (x)/\kappa (s)$ is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 29.20.3). Thus we see
the first equality as $\mathcal{O}_{X_ s, x}$ is Cohen-Macaulay and the second by Morphisms, Lemma 29.28.1. Thus we may apply Lemma 37.23.3 to find a diagram
with $x \in D$. Note that $\mathcal{O}_{D_ s, x} = \mathcal{O}_{X_ s, x}/(\overline{h})$ for some nonzerodivisor $\overline{h}$, see Divisors, Lemma 31.18.1. Hence $\mathcal{O}_{D_ s, x}$ is Cohen-Macaulay of dimension one less than the dimension of $\mathcal{O}_{X_ s, x}$, see Algebra, Lemma 10.104.2 for example. Thus the morphism $D \to S$ is flat, locally of finite presentation, and Cohen-Macaulay at $x$ with $\dim _ x(D_ s) = \dim _ x(X_ s) - 1 = d - 1$. By induction hypothesis we can find a regular immersion $Z \to D$ having properties (a), (b), (c). As $Z \to D \to U$ are both regular immersions, we see that also $Z \to U$ is a regular immersion by Divisors, Lemma 31.21.7. This finishes the proof. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2686 by Johan on
Comment #2711 by Takumi Murayama on