The Stacks project

Lemma 10.125.3. Let $R \to S$ be a ring map. Let $\mathfrak q \subset S$ be a prime lying over the prime $\mathfrak p$ of $R$. Assume

  1. $R \to S$ is of finite type,

  2. $\dim _{\mathfrak q}(S/R) = n$, and

  3. $\text{trdeg}_{\kappa (\mathfrak p)}\kappa (\mathfrak q) = r$.

Then there exist $f \in R$, $f \not\in \mathfrak p$, $g \in S$, $g \not\in \mathfrak q$ and a quasi-finite ring map

\[ \varphi : R_ f[x_1, \ldots , x_ n] \longrightarrow S_ g \]

such that $\varphi ^{-1}(\mathfrak qS_ g) = (\mathfrak p, x_{r + 1}, \ldots , x_ n)R_ f[x_{r + 1}, \ldots , x_ n]$

Proof. After replacing $S$ by a principal localization we may assume there exists a quasi-finite ring map $\varphi : R[t_1, \ldots , t_ n] \to S$, see Lemma 10.125.2. Set $\mathfrak q' = \varphi ^{-1}(\mathfrak q)$. Let $\overline{\mathfrak q}' \subset \kappa (\mathfrak p)[t_1, \ldots , t_ n]$ be the prime corresponding to $\mathfrak q'$. By Lemma 10.115.6 there exists a finite ring map $\kappa (\mathfrak p)[x_1, \ldots , x_ n] \to \kappa (\mathfrak p)[t_1, \ldots , t_ n]$ such that the inverse image of $\overline{\mathfrak q}'$ is $(x_{r + 1}, \ldots , x_ n)$. Let $\overline{h}_ i \in \kappa (\mathfrak p)[t_1, \ldots , t_ n]$ be the image of $x_ i$. We can find an element $f \in R$, $f \not\in \mathfrak p$ and $h_ i \in R_ f[t_1, \ldots , t_ n]$ which map to $\overline{h}_ i$ in $\kappa (\mathfrak p)[t_1, \ldots , t_ n]$. Then the ring map

\[ R_ f[x_1, \ldots , x_ n] \longrightarrow R_ f[t_1, \ldots , t_ n] \]

becomes finite after tensoring with $\kappa (\mathfrak p)$. In particular, $R_ f[t_1, \ldots , t_ n]$ is quasi-finite over $R_ f[x_1, \ldots , x_ n]$ at the prime $\mathfrak q'R_ f[t_1, \ldots , t_ n]$. Hence, by Lemma 10.123.13 there exists a $g \in R_ f[t_1, \ldots , t_ n]$, $g \not\in \mathfrak q'R_ f[t_1, \ldots , t_ n]$ such that $R_ f[x_1, \ldots , x_ n] \to R_ f[t_1, \ldots , t_ n, 1/g]$ is quasi-finite. Thus we see that the composition

\[ R_ f[x_1, \ldots , x_ n] \longrightarrow R_ f[t_1, \ldots , t_ n, 1/g] \longrightarrow S_{\varphi (g)} \]

is quasi-finite and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0520. Beware of the difference between the letter 'O' and the digit '0'.