Lemma 29.23.6. Let $f : X \to Y$ be a morphism of schemes. Let $g : Y' \to Y$ be open and surjective such that the base change $f' : X' \to Y'$ is quasi-compact. Then $f$ is quasi-compact.
Proof. Let $V \subset Y$ be a quasi-compact open. As $g$ is open and surjective we can find a quasi-compact open $W' \subset W$ such that $g(W') = V$. By assumption $(f')^{-1}(W')$ is quasi-compact. The image of $(f')^{-1}(W')$ in $X$ is equal to $f^{-1}(V)$, see Lemma 29.9.3. Hence $f^{-1}(V)$ is quasi-compact as the image of a quasi-compact space, see Topology, Lemma 5.12.7. Thus $f$ is quasi-compact. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)