Lemma 29.23.5. Let $\varphi : X \to Y$ be a morphism of schemes. If $\varphi $ is open, then $\varphi $ is generizing (i.e., generalizations lift along $\varphi $). If $\varphi $ is universally open, then $\varphi $ is universally generizing.
Follows from the implication (a) $\Rightarrow $ (b) in [IV, Corollary 1.10.4, EGA]
Proof.
Assume $\varphi $ is open. Let $y' \leadsto y$ be a specialization of points of $Y$. Let $x \in X$ with $\varphi (x) = y$. Choose affine opens $U \subset X$ and $V \subset Y$ such that $\varphi (U) \subset V$ and $x \in U$. Then also $y' \in V$. Hence we may replace $X$ by $U$ and $Y$ by $V$ and assume $X$, $Y$ affine. The affine case is Algebra, Lemma 10.41.2 (combined with Algebra, Lemma 10.41.3).
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2740 by Ariyan Javanpeykar on
Comment #2860 by Johan on