Lemma 101.3.7. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks representable by algebraic spaces. Then the following are equivalent
$f$ is locally separated, and
$\Delta _ f$ is an immersion.
Lemma 101.3.7. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks representable by algebraic spaces. Then the following are equivalent
$f$ is locally separated, and
$\Delta _ f$ is an immersion.
Proof. The statements “$f$ is locally separated”, and “$\Delta _ f$ is an immersion” refer to the notions defined in Properties of Stacks, Section 100.3. Proof omitted. Hint: Argue as in the proofs of Lemmas 101.3.5 and 101.3.6. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #816 by Matthew Emerton on
Comment #817 by Johan on
There are also: