Lemma 94.18.2. Suppose $\mathit{Sch}_{fppf}$ is contained in $\mathit{Sch}'_{fppf}$. Let $S$ be an object of $\mathit{Sch}_{fppf}$. Denote $\textit{Algebraic-Stacks}/S$ the $2$-category of algebraic stacks over $S$ defined using $\mathit{Sch}_{fppf}$. Similarly, denote $\textit{Algebraic-Stacks}'/S$ the $2$-category of algebraic stacks over $S$ defined using $\mathit{Sch}'_{fppf}$. The rule $\mathcal{X} \mapsto f^{-1}\mathcal{X}$ of Lemma 94.18.1 defines a functor of $2$-categories
which defines equivalences of morphism categories
for every objects $\mathcal{X}, \mathcal{Y}$ of $\textit{Algebraic-Stacks}/S$. An object $\mathcal{X}'$ of $\textit{Algebraic-Stacks}'/S$ is equivalence to $f^{-1}\mathcal{X}$ for some $\mathcal{X}$ in $\textit{Algebraic-Stacks}/S$ if and only if it has a presentation $\mathcal{X} = [U'/R']$ with $U', R'$ isomorphic to $f^{-1}U$, $f^{-1}R$ for some $U, R \in \textit{Spaces}/S$.
Comments (2)
Comment #5524 by Olivier de Gaay Fortman on
Comment #5717 by Johan on