The Stacks project

Lemma 40.11.7. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Assume $U$ is the spectrum of a field. Let $Z \subset U \times _ S U$ be the reduced closed subscheme (see Schemes, Definition 26.12.5) whose underlying topological space is the closure of the image of $j = (t, s) : R \to U \times _ S U$. Then $\text{pr}_{02}(Z \times _{\text{pr}_1, U, \text{pr}_0} Z) \subset Z$ set theoretically.

Proof. As $(U, U \times _ S U, \text{pr}_1, \text{pr}_0, \text{pr}_{02})$ is a groupoid scheme over $S$ this is a special case of Lemma 40.11.3. But we can also prove it directly as follows.

Write $U = \mathop{\mathrm{Spec}}(k)$. Denote $R_ s$ (resp. $Z_ s$, resp. $U^2_ s$) the scheme $R$ (resp. $Z$, resp. $U \times _ S U$) viewed as a scheme over $k$ via $s$ (resp. $\text{pr}_1|_ Z$, resp. $\text{pr}_1$). Similarly, denote ${}_ tR$ (resp. ${}_ tZ$, resp. ${}_ tU^2$) the scheme $R$ (resp. $Z$, resp. $U \times _ S U$) viewed as a scheme over $k$ via $t$ (resp. $\text{pr}_0|_ Z$, resp. $\text{pr}_0$). The morphism $j$ induces morphisms of schemes $j_ s : R_ s \to U^2_ s$ and ${}_ tj : {}_ tR \to {}_ tU^2$ over $k$. Consider the commutative diagram

\[ \xymatrix{ R_ s \times _ k {}_ tR \ar[r]^ c \ar[d]_{j_ s \times {}_ tj} & R \ar[d]^ j \\ U^2_ s \times _ k {}_ tU^2 \ar[r] & U \times _ S U } \]

By Varieties, Lemma 33.24.2 we see that the closure of the image of $j_ s \times {}_ tj$ is $Z_ s \times _ k {}_ tZ$. By the commutativity of the diagram we conclude that $Z_ s \times _ k {}_ tZ$ maps into $Z$ by the bottom horizontal arrow. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04QB. Beware of the difference between the letter 'O' and the digit '0'.