Lemma 40.11.7. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Assume $U$ is the spectrum of a field. Let $Z \subset U \times _ S U$ be the reduced closed subscheme (see Schemes, Definition 26.12.5) whose underlying topological space is the closure of the image of $j = (t, s) : R \to U \times _ S U$. Then $\text{pr}_{02}(Z \times _{\text{pr}_1, U, \text{pr}_0} Z) \subset Z$ set theoretically.
Proof. As $(U, U \times _ S U, \text{pr}_1, \text{pr}_0, \text{pr}_{02})$ is a groupoid scheme over $S$ this is a special case of Lemma 40.11.3. But we can also prove it directly as follows.
Write $U = \mathop{\mathrm{Spec}}(k)$. Denote $R_ s$ (resp. $Z_ s$, resp. $U^2_ s$) the scheme $R$ (resp. $Z$, resp. $U \times _ S U$) viewed as a scheme over $k$ via $s$ (resp. $\text{pr}_1|_ Z$, resp. $\text{pr}_1$). Similarly, denote ${}_ tR$ (resp. ${}_ tZ$, resp. ${}_ tU^2$) the scheme $R$ (resp. $Z$, resp. $U \times _ S U$) viewed as a scheme over $k$ via $t$ (resp. $\text{pr}_0|_ Z$, resp. $\text{pr}_0$). The morphism $j$ induces morphisms of schemes $j_ s : R_ s \to U^2_ s$ and ${}_ tj : {}_ tR \to {}_ tU^2$ over $k$. Consider the commutative diagram
By Varieties, Lemma 33.24.2 we see that the closure of the image of $j_ s \times {}_ tj$ is $Z_ s \times _ k {}_ tZ$. By the commutativity of the diagram we conclude that $Z_ s \times _ k {}_ tZ$ maps into $Z$ by the bottom horizontal arrow. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)