Lemma 40.10.1. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. If $U$ is the spectrum of a field, then the composition morphism $c : R \times _{s, U, t} R \to R$ is open.
Proof. The composition is isomorphic to the projection map $\text{pr}_1 : R \times _{t, U, t} R \to R$ by Diagram (40.3.0.2). The projection is open by Morphisms, Lemma 29.23.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)