Lemma 7.30.5. Let $\mathcal{C}$ be a site. Let $\mathcal{F} = h_ U^\# $ for some object $U$ of $\mathcal{C}$. Then $j_\mathcal {F} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ constructed in Lemma 7.30.1 agrees with the morphism of topoi $j_ U : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ constructed in Section 7.25 via the identification $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $ of Lemma 7.25.4.
Proof. We have seen in Lemma 7.25.4 that the composition $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is $j_{U!}$. The functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is $j_{\mathcal{F}!}$ by Lemma 7.30.1. Hence $j_{\mathcal{F}!} = j_{U!}$ via the identification. So $j_\mathcal {F}^{-1} = j_ U^{-1}$ (by adjointness) and so $j_{\mathcal{F}, *} = j_{U, *}$ (by adjointness again). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)