Lemma 18.40.5. Being a locally ringed site is an intrinsic property. More precisely,
if $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}') \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is a morphism of topoi and $(\mathcal{C}, \mathcal{O})$ is a locally ringed site, then $(\mathcal{C}', f^{-1}\mathcal{O})$ is a locally ringed site, and
if $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ is an equivalence of ringed topoi, then $(\mathcal{C}, \mathcal{O})$ is locally ringed if and only if $(\mathcal{C}', \mathcal{O}')$ is locally ringed.
Comments (0)