The Stacks project

Lemma 76.5.4. Let $S$ be a scheme. The conormal sheaf of Definition 76.5.1, and its functoriality of Lemma 76.5.3 satisfy the following properties:

  1. If $Z \to X$ is an immersion of schemes over $S$, then the conormal sheaf agrees with the one from Morphisms, Definition 29.31.1.

  2. If in Lemma 76.5.3 all the spaces are schemes, then the map $f^*\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$ is the same as the one constructed in Morphisms, Lemma 29.31.3.

  3. Given a commutative diagram

    \[ \xymatrix{ Z \ar[r]_ i \ar[d]_ f & X \ar[d]^ g \\ Z' \ar[r]^{i'} \ar[d]_{f'} & X' \ar[d]^{g'} \\ Z'' \ar[r]^{i''} & X'' } \]

    then the map $(f' \circ f)^*\mathcal{C}_{Z''/X''} \to \mathcal{C}_{Z/X}$ is the same as the composition of $f^*\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$ with the pullback by $f$ of $(f')^*\mathcal{C}_{Z''/X''} \to \mathcal{C}_{Z'/X'}$

Proof. Omitted. Note that Part (1) is a special case of Lemma 76.5.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04G2. Beware of the difference between the letter 'O' and the digit '0'.