The Stacks project

Lemma 37.7.7. Let

\[ \xymatrix{ Z \ar[r]_ h \ar[d]_ f & X \ar[d]^ g \\ W \ar[r]^{h'} & Y } \]

be a fibre product diagram in the category of schemes with $h'$ formally unramified and $g$ flat. In this case the corresponding map $Z' \to W'$ of universal first order thickenings is flat, and $f^*\mathcal{C}_{W/Y} \to \mathcal{C}_{Z/X}$ is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms, Lemma 29.25.8. Hence the first statement follows from the description of $W'$ in Lemma 37.7.6. It is clear that $X \times _ Y W'$ is a first order thickening. It is straightforward to check that it has the universal property because $W'$ has the universal property (by mapping properties of fibre products). See Morphisms, Lemma 29.31.4 for why this implies that the map of conormal sheaves is an isomorphism. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04F9. Beware of the difference between the letter 'O' and the digit '0'.