The Stacks project

Lemma 10.149.4. Let $A \to B$ be a formally unramified ring map. Let $\varphi : B' \to B$ be the universal first order thickening of $B$ over $A$.

  1. Let $S \subset A$ be a multiplicative subset. Then $S^{-1}B' \to S^{-1}B$ is the universal first order thickening of $S^{-1}B$ over $S^{-1}A$. In particular $S^{-1}C_{B/A} = C_{S^{-1}B/S^{-1}A}$.

  2. Let $S \subset B$ be a multiplicative subset. Then $S' = \varphi ^{-1}(S)$ is a multiplicative subset in $B'$ and $(S')^{-1}B' \to S^{-1}B$ is the universal first order thickening of $S^{-1}B$ over $A$. In particular $S^{-1}C_{B/A} = C_{S^{-1}B/A}$.

Note that the lemma makes sense by Lemma 10.148.4.

Proof. With notation and assumptions as in (1). Let $(S^{-1}B)' \to S^{-1}B$ be the universal first order thickening of $S^{-1}B$ over $S^{-1}A$. Note that $S^{-1}B' \to S^{-1}B$ is a surjection of $S^{-1}A$-algebras whose kernel has square zero. Hence by definition we obtain a map $(S^{-1}B)' \to S^{-1}B'$ compatible with the maps towards $S^{-1}B$. Consider any commutative diagram

\[ \xymatrix{ B \ar[r] & S^{-1}B \ar[r] & D/I \\ A \ar[r] \ar[u] & S^{-1}A \ar[r] \ar[u] & D \ar[u] } \]

where $I \subset D$ is an ideal of square zero. Since $B'$ is the universal first order thickening of $B$ over $A$ we obtain an $A$-algebra map $B' \to D$. But it is clear that the image of $S$ in $D$ is mapped to invertible elements of $D$, and hence we obtain a compatible map $S^{-1}B' \to D$. Applying this to $D = (S^{-1}B)'$ we see that we get a map $S^{-1}B' \to (S^{-1}B)'$. We omit the verification that this map is inverse to the map described above.

With notation and assumptions as in (2). Let $(S^{-1}B)' \to S^{-1}B$ be the universal first order thickening of $S^{-1}B$ over $A$. Note that $(S')^{-1}B' \to S^{-1}B$ is a surjection of $A$-algebras whose kernel has square zero. Hence by definition we obtain a map $(S^{-1}B)' \to (S')^{-1}B'$ compatible with the maps towards $S^{-1}B$. Consider any commutative diagram

\[ \xymatrix{ B \ar[r] & S^{-1}B \ar[r] & D/I \\ A \ar[r] \ar[u] & A \ar[r] \ar[u] & D \ar[u] } \]

where $I \subset D$ is an ideal of square zero. Since $B'$ is the universal first order thickening of $B$ over $A$ we obtain an $A$-algebra map $B' \to D$. But it is clear that the image of $S'$ in $D$ is mapped to invertible elements of $D$, and hence we obtain a compatible map $(S')^{-1}B' \to D$. Applying this to $D = (S^{-1}B)'$ we see that we get a map $(S')^{-1}B' \to (S^{-1}B)'$. We omit the verification that this map is inverse to the map described above. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 10.149: Conormal modules and universal thickenings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04EE. Beware of the difference between the letter 'O' and the digit '0'.