The Stacks project

Lemma 10.148.3. Let $R \to S$ be a ring map. The following are equivalent:

  1. $R \to S$ is formally unramified,

  2. $R \to S_{\mathfrak q}$ is formally unramified for all primes $\mathfrak q$ of $S$, and

  3. $R_{\mathfrak p} \to S_{\mathfrak q}$ is formally unramified for all primes $\mathfrak q$ of $S$ with $\mathfrak p = R \cap \mathfrak q$.

Proof. We have seen in Lemma 10.148.2 that (1) is equivalent to $\Omega _{S/R} = 0$. Similarly, by Lemma 10.131.8 we see that (2) and (3) are equivalent to $(\Omega _{S/R})_{\mathfrak q} = 0$ for all $\mathfrak q$. Hence the equivalence follows from Lemma 10.23.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04E8. Beware of the difference between the letter 'O' and the digit '0'.