Lemma 29.36.17. Let
\[ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ S' \ar[r]^ g & S } \]
be a cartesian diagram of schemes. Let $W \subset X$, resp. $W' \subset X'$ be the open subscheme of points where $f$, resp. $f'$ is étale. Then $W' = (g')^{-1}(W)$ if
$f$ is flat and locally of finite presentation, or
$f$ is locally of finite presentation and $g$ is flat.
Proof.
Assume first that $f$ locally of finite type. Consider the set
\[ T = \{ x \in X \mid f\text{ is unramified at }x\} \]
and the corresponding set $T' \subset X'$ for $f'$. Then $T' = (g')^{-1}(T)$ by Lemma 29.35.15.
Thus case (1) follows because in case (1) $T$ is the (open) set of points where $f$ is étale by Lemma 29.36.16.
In case (2) let $x' \in W'$. Then $g'$ is flat at $x'$ (Lemma 29.25.7) and $g \circ f'$ is flat at $x'$ (Lemma 29.25.5). It follows that $f$ is flat at $x = g'(x')$ by Lemma 29.25.13. On the other hand, since $x' \in T'$ (Lemma 29.34.5) we see that $x \in T$. Hence $f$ is étale at $x$ by Lemma 29.36.15.
$\square$
Comments (2)
Comment #3211 by Dario Weißmann on
Comment #3315 by Johan on
There are also: