Lemma 59.61.5. Let $K$ be a field and let $K^{sep}$ be a separable algebraic closure. Then the set of isomorphism classes of central simple algebras of degree $d$ over $K$ is in bijection with the non-abelian cohomology $H^1(\text{Gal}(K^{sep}/K), \text{PGL}_ d(K^{sep}))$.
Central simple algebras are classified by Galois cohomology of PGL.
Sketch of proof..
The Skolem-Noether theorem (see Brauer Groups, Theorem 11.6.1) implies that for any field $L$ the group $\text{Aut}_{L\text{-Algebras}}(\text{Mat}_ d(L))$ equals $\text{PGL}_ d(L)$. By Theorem 59.61.1, we see that central simple algebras of degree $d$ correspond to forms of the $K$-algebra $\text{Mat}_ d(K)$. Combined we see that isomorphism classes of degree $d$ central simple algebras correspond to elements of $H^1(\text{Gal}(K^{sep}/K), \text{PGL}_ d(K^{sep}))$. For more details on twisting, see for example [SilvermanEllipticCurves].
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #3247 by Giulio on
There are also: