Definition 59.61.4. Let $K$ be a field. The Brauer group of $K$ is the set $\text{Br} (K)$ of similarity classes of finite central simple algebras over $K$, endowed with the group law induced by tensor product (over $K$). The class of $A$ in $\text{Br}(K)$ is denoted by $[A]$. The neutral element is $[K] = [\text{Mat}(d \times d, K)]$ for any $d \geq 1$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: