Lemma 59.51.6. Let $f: X\to Y$ be a morphism of schemes and $\mathcal{F}\in \textit{Ab}(X_{\acute{e}tale})$. Then $R^ pf_*\mathcal{F}$ is the sheaf associated to the presheaf
\[ (V \to Y) \longmapsto H_{\acute{e}tale}^ p(X \times _ Y V, \mathcal{F}|_{X \times _ Y V}). \]
More generally, for $K \in D(X_{\acute{e}tale})$ we have that $R^ pf_*K$ is the sheaf associated to the presheaf
\[ (V \to Y) \longmapsto H_{\acute{e}tale}^ p(X \times _ Y V, K|_{X \times _ Y V}). \]
Proof.
This lemma is valid for topological spaces, and the proof in this case is the same. See Cohomology on Sites, Lemma 21.7.4 for the case of a sheaf and see Cohomology on Sites, Lemma 21.20.3 for the case of a complex of abelian sheaves.
$\square$
Comments (0)