59.22 Cohomology of quasi-coherent sheaves
We start with a simple lemma (which holds in greater generality than stated). It says that the Čech complex of a standard covering is equal to the Čech complex of an fpqc covering of the form $\{ \mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)\} $ with $A \to B$ faithfully flat.
Lemma 59.22.1. Let $\tau \in \{ fppf, syntomic, smooth, {\acute{e}tale}, Zariski\} $. Let $S$ be a scheme. Let $\mathcal{F}$ be an abelian sheaf on $(\mathit{Sch}/S)_\tau $, or on $S_\tau $ in case $\tau = {\acute{e}tale}$, and let $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ be a standard $\tau $-covering of this site. Let $V = \coprod _{i \in I} U_ i$. Then
$V$ is an affine scheme,
$\mathcal{V} = \{ V \to U\} $ is an fpqc covering and also a $\tau $-covering unless $\tau = Zariski$,
the Čech complexes $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ and $\check{\mathcal{C}}^\bullet (\mathcal{V}, \mathcal{F})$ agree.
Proof.
The definition of a standard $\tau $-covering is given in Topologies, Definition 34.3.4, 34.4.5, 34.5.5, 34.6.5, and 34.7.5. By definition each of the schemes $U_ i$ is affine and $I$ is a finite set. Hence $V$ is an affine scheme. It is clear that $V \to U$ is flat and surjective, hence $\mathcal{V}$ is an fpqc covering, see Example 59.15.3. Excepting the Zariski case, the covering $\mathcal{V}$ is also a $\tau $-covering, see Topologies, Definition 34.4.1, 34.5.1, 34.6.1, and 34.7.1.
Note that $\mathcal{U}$ is a refinement of $\mathcal{V}$ and hence there is a map of Čech complexes $\check{\mathcal{C}}^\bullet (\mathcal{V}, \mathcal{F}) \to \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$, see Cohomology on Sites, Equation (21.8.2.1). Next, we observe that if $T = \coprod _{j \in J} T_ j$ is a disjoint union of schemes in the site on which $\mathcal{F}$ is defined then the family of morphisms with fixed target $\{ T_ j \to T\} _{j \in J}$ is a Zariski covering, and so
59.22.1.1
\begin{equation} \label{etale-cohomology-equation-sheaf-coprod} \mathcal{F}(T) = \mathcal{F}(\coprod \nolimits _{j \in J} T_ j) = \prod \nolimits _{j \in J} \mathcal{F}(T_ j) \end{equation}
by the sheaf condition of $\mathcal{F}$. This implies the map of Čech complexes above is an isomorphism in each degree because
\[ V \times _ U \ldots \times _ U V = \coprod \nolimits _{i_0, \ldots i_ p} U_{i_0} \times _ U \ldots \times _ U U_{i_ p} \]
as schemes.
$\square$
Note that Equality (59.22.1.1) is false for a general presheaf. Even for sheaves it does not hold on any site, since coproducts may not lead to coverings, and may not be disjoint. But it does for all the usual ones (at least all the ones we will study).
Lemma 59.22.3 (Locality of cohomology). Let $\mathcal{C}$ be a site, $\mathcal{F}$ an abelian sheaf on $\mathcal{C}$, $U$ an object of $\mathcal{C}$, $p > 0$ an integer and $\xi \in H^ p(U, \mathcal{F})$. Then there exists a covering $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ of $U$ in $\mathcal{C}$ such that $\xi |_{U_ i} = 0$ for all $i \in I$.
Proof.
Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $. Then $\xi $ is represented by a cocycle $\tilde{\xi } \in \mathcal{I}^ p(U)$ with $d^ p(\tilde{\xi }) = 0$. By assumption, the sequence $\mathcal{I}^{p - 1} \to \mathcal{I}^ p \to \mathcal{I}^{p + 1}$ in exact in $\textit{Ab}(\mathcal{C})$, which means that there exists a covering $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ such that $\tilde{\xi }|_{U_ i} = d^{p - 1}(\xi _ i)$ for some $\xi _ i \in \mathcal{I}^{p-1}(U_ i)$. Since the cohomology class $\xi |_{U_ i}$ is represented by the cocycle $\tilde{\xi }|_{U_ i}$ which is a coboundary, it vanishes. For more details see Cohomology on Sites, Lemma 21.7.3.
$\square$
Theorem 59.22.4. Let $S$ be a scheme and $\mathcal{F}$ a quasi-coherent $\mathcal{O}_ S$-module. Let $\mathcal{C}$ be either $(\mathit{Sch}/S)_\tau $ for $\tau \in \{ fppf, syntomic, smooth, {\acute{e}tale}, Zariski\} $ or $S_{\acute{e}tale}$. Then
\[ H^ p(S, \mathcal{F}) = H^ p_\tau (S, \mathcal{F}^ a) \]
for all $p \geq 0$ where
the left hand side indicates the usual cohomology of the sheaf $\mathcal{F}$ on the underlying topological space of the scheme $S$, and
the right hand side indicates cohomology of the abelian sheaf $\mathcal{F}^ a$ (see Proposition 59.17.1) on the site $\mathcal{C}$.
Proof.
We are going to show that $H^ p(U, f^*\mathcal{F}) = H^ p_\tau (U, \mathcal{F}^ a)$ for any object $f : U \to S$ of the site $\mathcal{C}$. The result is true for $p = 0$ by the sheaf property.
Assume that $U$ is affine. Then we want to prove that $H^ p_\tau (U, \mathcal{F}^ a) = 0$ for all $p > 0$. We use induction on $p$.
Pick $\xi \in H^1_\tau (U, \mathcal{F}^ a)$. By Lemma 59.22.3, there exists an fpqc covering $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ such that $\xi |_{U_ i} = 0$ for all $i \in I$. Up to refining $\mathcal{U}$, we may assume that $\mathcal{U}$ is a standard $\tau $-covering. Applying the spectral sequence of Theorem 59.19.2, we see that $\xi $ comes from a cohomology class $\check\xi \in \check H^1(\mathcal{U}, \mathcal{F}^ a)$. Consider the covering $\mathcal{V} = \{ \coprod _{i\in I} U_ i \to U\} $. By Lemma 59.22.1, $\check H^\bullet (\mathcal{U}, \mathcal{F}^ a) = \check H^\bullet (\mathcal{V}, \mathcal{F}^ a)$. On the other hand, since $\mathcal{V}$ is a covering of the form $\{ \mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)\} $ and $f^*\mathcal{F} = \widetilde{M}$ for some $A$-module $M$, we see the Čech complex $\check{\mathcal{C}}^\bullet (\mathcal{V}, \mathcal{F})$ is none other than the complex $(B/A)_\bullet \otimes _ A M$. Now by Lemma 59.16.4, $H^ p((B/A)_\bullet \otimes _ A M) = 0$ for $p > 0$, hence $\check\xi = 0$ and so $\xi = 0$.
Pick $\xi \in H^ p_\tau (U, \mathcal{F}^ a)$. By Lemma 59.22.3, there exists an fpqc covering $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ such that $\xi |_{U_ i} = 0$ for all $i \in I$. Up to refining $\mathcal{U}$, we may assume that $\mathcal{U}$ is a standard $\tau $-covering. We apply the spectral sequence of Theorem 59.19.2. Observe that the intersections $U_{i_0} \times _ U \ldots \times _ U U_{i_ p}$ are affine, so that by induction hypothesis the cohomology groups
\[ E_2^{p, q} = \check H^ p(\mathcal{U}, \underline{H}^ q(\mathcal{F}^ a)) \]
vanish for all $0 < q < p$. We see that $\xi $ must come from a $\check\xi \in \check H^ p(\mathcal{U}, \mathcal{F}^ a)$. Replacing $\mathcal{U}$ with the covering $\mathcal{V}$ containing only one morphism and using Lemma 59.16.4 again, we see that the Čech cohomology class $\check\xi $ must be zero, hence $\xi = 0$.
Next, assume that $U$ is separated. Choose an affine open covering $U = \bigcup _{i \in I} U_ i$ of $U$. The family $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ is then an fpqc covering, and all the intersections $U_{i_0} \times _ U \ldots \times _ U U_{i_ p}$ are affine since $U$ is separated. So all rows of the spectral sequence of Theorem 59.19.2 are zero, except the zeroth row. Therefore
\[ H^ p_\tau (U, \mathcal{F}^ a) = \check H^ p(\mathcal{U}, \mathcal{F}^ a) = \check H^ p(\mathcal{U}, \mathcal{F}) = H^ p(U, \mathcal{F}) \]
where the last equality results from standard scheme theory, see Cohomology of Schemes, Lemma 30.2.6.
The general case is technical and (to extend the proof as given here) requires a discussion about maps of spectral sequences, so we won't treat it. It follows from Descent, Proposition 35.9.3 (whose proof takes a slightly different approach) combined with Cohomology on Sites, Lemma 21.7.1.
$\square$
Comments (3)
Comment #4587 by Shiro on
Comment #4589 by Johan on
Comment #4767 by Johan on