Remark 34.11.1. Take any category $\mathit{Sch}_\alpha $ constructed as in Sets, Lemma 3.9.2 starting with the set of schemes $\{ X, Y, S\} $. Choose any set of coverings $\text{Cov}_{fppf}$ on $\mathit{Sch}_\alpha $ as in Sets, Lemma 3.11.1 starting with the category $\mathit{Sch}_\alpha $ and the class of fppf coverings. Let $\mathit{Sch}_{fppf}$ denote the big fppf site so obtained. Next, for $\tau \in \{ Zariski, {\acute{e}tale}, smooth, syntomic\} $ let $\mathit{Sch}_\tau $ have the same underlying category as $\mathit{Sch}_{fppf}$ with coverings $\text{Cov}_\tau \subset \text{Cov}_{fppf}$ simply the subset of $\tau $-coverings. It is straightforward to check that this gives rise to a big site $\mathit{Sch}_\tau $.
34.11 Change of topologies
Let $f : X \to Y$ be a morphism of schemes over a base scheme $S$. In this case we have the following morphisms of sites1 (with suitable choices of sites as in Remark 34.11.1 below):
$(\mathit{Sch}/X)_{fppf} \longrightarrow (\mathit{Sch}/Y)_{fppf}$,
$(\mathit{Sch}/X)_{fppf} \longrightarrow (\mathit{Sch}/Y)_{syntomic}$,
$(\mathit{Sch}/X)_{fppf} \longrightarrow (\mathit{Sch}/Y)_{smooth}$,
$(\mathit{Sch}/X)_{fppf} \longrightarrow (\mathit{Sch}/Y)_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{fppf} \longrightarrow (\mathit{Sch}/Y)_{Zar}$,
$(\mathit{Sch}/X)_{syntomic} \longrightarrow (\mathit{Sch}/Y)_{syntomic}$,
$(\mathit{Sch}/X)_{syntomic} \longrightarrow (\mathit{Sch}/Y)_{smooth}$,
$(\mathit{Sch}/X)_{syntomic} \longrightarrow (\mathit{Sch}/Y)_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{syntomic} \longrightarrow (\mathit{Sch}/Y)_{Zar}$,
$(\mathit{Sch}/X)_{smooth} \longrightarrow (\mathit{Sch}/Y)_{smooth}$,
$(\mathit{Sch}/X)_{smooth} \longrightarrow (\mathit{Sch}/Y)_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{smooth} \longrightarrow (\mathit{Sch}/Y)_{Zar}$,
$(\mathit{Sch}/X)_{\acute{e}tale}\longrightarrow (\mathit{Sch}/Y)_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{\acute{e}tale}\longrightarrow (\mathit{Sch}/Y)_{Zar}$,
$(\mathit{Sch}/X)_{Zar} \longrightarrow (\mathit{Sch}/Y)_{Zar}$,
$(\mathit{Sch}/X)_{fppf} \longrightarrow Y_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{syntomic} \longrightarrow Y_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{smooth} \longrightarrow Y_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{\acute{e}tale}\longrightarrow Y_{\acute{e}tale}$,
$(\mathit{Sch}/X)_{fppf} \longrightarrow Y_{Zar}$,
$(\mathit{Sch}/X)_{syntomic} \longrightarrow Y_{Zar}$,
$(\mathit{Sch}/X)_{smooth} \longrightarrow Y_{Zar}$,
$(\mathit{Sch}/X)_{\acute{e}tale}\longrightarrow Y_{Zar}$,
$(\mathit{Sch}/X)_{Zar} \longrightarrow Y_{Zar}$,
$X_{\acute{e}tale}\longrightarrow Y_{\acute{e}tale}$,
$X_{\acute{e}tale}\longrightarrow Y_{Zar}$,
$X_{Zar} \longrightarrow Y_{Zar}$,
In each case the underlying continuous functor $\mathit{Sch}/Y \to \mathit{Sch}/X$, or $Y_\tau \to \mathit{Sch}/X$ is the functor $Y'/Y \mapsto X \times _ Y Y'/X$. Namely, in the sections above we have seen the morphisms $f_{big} : (\mathit{Sch}/X)_\tau \to (\mathit{Sch}/Y)_\tau $ and $f_{small} : X_\tau \to Y_\tau $ for $\tau $ as above. We also have seen the morphisms of sites $\pi _ Y : (\mathit{Sch}/Y)_\tau \to Y_\tau $ for $\tau \in \{ {\acute{e}tale}, Zariski\} $. On the other hand, it is clear that the identity functor $(\mathit{Sch}/X)_\tau \to (\mathit{Sch}/X)_{\tau '}$ defines a morphism of sites when $\tau $ is a stronger topology than $\tau '$. Hence composing these gives the list of possible morphisms above.
Because of the simple description of the underlying functor it is clear that given morphisms of schemes $X \to Y \to Z$ the composition of two of the morphisms of sites above, e.g.,
is the corresponding morphism of sites associated to the morphism of schemes $X \to Z$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)