The Stacks project

Proposition 10.162.16. The following types of rings are Nagata and in particular universally Japanese:

  1. fields,

  2. Noetherian complete local rings,

  3. $\mathbf{Z}$,

  4. Dedekind domains with fraction field of characteristic zero,

  5. finite type ring extensions of any of the above.

Proof. The Noetherian complete local ring case is Lemma 10.162.8. In the other cases you just check if $R/\mathfrak p$ is N-2 for every prime ideal $\mathfrak p$ of the ring. This is clear whenever $R/\mathfrak p$ is a field, i.e., $\mathfrak p$ is maximal. Hence for the Dedekind ring case we only need to check it when $\mathfrak p = (0)$. But since we assume the fraction field has characteristic zero Lemma 10.161.11 kicks in. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 10.162: Nagata rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0335. Beware of the difference between the letter 'O' and the digit '0'.