Definition 10.162.9. Let $(R, \mathfrak m)$ be a Noetherian local ring. We say $R$ is analytically unramified if its completion $R^\wedge = \mathop{\mathrm{lim}}\nolimits _ n R/\mathfrak m^ n$ is reduced. A prime ideal $\mathfrak p \subset R$ is said to be analytically unramified if $R/\mathfrak p$ is analytically unramified.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: