Lemma 10.161.5. Let $R$ be a domain. Let $R \subset S$ be a quasi-finite extension of domains (for example finite). Assume $R$ is N-2 and Noetherian. Then $S$ is N-2.
Proof. Let $L/K$ be the induced extension of fraction fields. Note that this is a finite field extension (for example by Lemma 10.122.2 (2) applied to the fibre $S \otimes _ R K$, and the definition of a quasi-finite ring map). Let $S'$ be the integral closure of $R$ in $S$. Then $S'$ is contained in the integral closure of $R$ in $L$ which is finite over $R$ by assumption. As $R$ is Noetherian this implies $S'$ is finite over $R$. By Lemma 10.123.14 there exist elements $g_1, \ldots , g_ n \in S'$ such that $S'_{g_ i} \cong S_{g_ i}$ and such that $g_1, \ldots , g_ n$ generate the unit ideal in $S$. Hence it suffices to show that $S'$ is N-2 by Lemmas 10.161.3 and 10.161.4. Thus we have reduced to the case where $S$ is finite over $R$.
Assume $R \subset S$ with hypotheses as in the lemma and moreover that $S$ is finite over $R$. Let $M$ be a finite field extension of the fraction field of $S$. Then $M$ is also a finite field extension of $K$ and we conclude that the integral closure $T$ of $R$ in $M$ is finite over $R$. By Lemma 10.36.16 we see that $T$ is also the integral closure of $S$ in $M$ and we win by Lemma 10.36.15. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: