Lemma 10.42.3. Let $K/k$ be a separably generated, and finitely generated field extension. Set $r = \text{trdeg}_ k(K)$. Then there exist elements $x_1, \ldots , x_{r + 1}$ of $K$ such that
$x_1, \ldots , x_ r$ is a transcendence basis of $K$ over $k$,
$K = k(x_1, \ldots , x_{r + 1})$, and
$x_{r + 1}$ is separable over $k(x_1, \ldots , x_ r)$.
Comments (0)
There are also: