Lemma 10.36.11. Integral closure commutes with localization: If $A \to B$ is a ring map, and $S \subset A$ is a multiplicative subset, then the integral closure of $S^{-1}A$ in $S^{-1}B$ is $S^{-1}B'$, where $B' \subset B$ is the integral closure of $A$ in $B$.
Proof. Since localization is exact we see that $S^{-1}B' \subset S^{-1}B$. Suppose $x \in B'$ and $f \in S$. Then $x^ d + \sum _{i = 1, \ldots , d} a_ i x^{d - i} = 0$ in $B$ for some $a_ i \in A$. Hence also
in $S^{-1}B$. In this way we see that $S^{-1}B'$ is contained in the integral closure of $S^{-1}A$ in $S^{-1}B$. Conversely, suppose that $x/f \in S^{-1}B$ is integral over $S^{-1}A$. Then we have
in $S^{-1}B$ for some $a_ i \in A$ and $f_ i \in S$. This means that
for a suitable $f' \in S$. Hence $f'f_1\ldots f_ dx \in B'$ and thus $x/f \in S^{-1}B'$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: