Lemma 10.31.2. If $R$ is a Noetherian ring, then so is the formal power series ring $R[[x_1, \ldots , x_ n]]$.
Proof. Since $R[[x_1, \ldots , x_{n + 1}]] \cong R[[x_1, \ldots , x_ n]][[x_{n + 1}]]$ it suffices to prove the statement that $R[[x]]$ is Noetherian if $R$ is Noetherian. Let $I \subset R[[x]]$ be a ideal. We have to show that $I$ is a finitely generated ideal. For each integer $d$ denote $I_ d = \{ a \in R \mid ax^ d + \text{h.o.t.} \in I\} $. Then we see that $I_0 \subset I_1 \subset \ldots $ stabilizes as $R$ is Noetherian. Choose $d_0$ such that $I_{d_0} = I_{d_0 + 1} = \ldots $. For each $d \leq d_0$ choose elements $f_{d, j} \in I \cap (x^ d)$, $j = 1, \ldots , n_ d$ such that if we write $f_{d, j} = a_{d, j}x^ d + \text{h.o.t}$ then $I_ d = (a_{d, j})$. Denote $I' = (\{ f_{d, j}\} _{d = 0, \ldots , d_0, j = 1, \ldots , n_ d})$. Then it is clear that $I' \subset I$. Pick $f \in I$. First we may choose $c_{d, i} \in R$ such that
Next, we can choose $c_{i, 1} \in R$, $i = 1, \ldots , n_{d_0}$ such that
Next, we can choose $c_{i, 2} \in R$, $i = 1, \ldots , n_{d_0}$ such that
And so on. In the end we see that
is contained in $I'$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #343 by Fred on
Comment #352 by Johan on