Lemma 42.37.2. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Assume $X$ is integral and $n = \dim _\delta (X)$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. The first Chern class of $\mathcal{L}$ on $X$ of Definition 42.37.1 is equal to the Weil divisor associated to $\mathcal{L}$ by Definition 42.24.1.
Proof. In this proof we use $c_1(\mathcal{L}) \cap [X]$ to denote the construction of Definition 42.24.1. Since $\mathcal{L}$ has rank $1$ we have $\mathbf{P}(\mathcal{L}) = X$ and $\mathcal{O}_{\mathbf{P}(\mathcal{L})}(1) = \mathcal{L}$ by our normalizations. Hence (42.37.1.1) reads
Since $c_0 = [X]$, we conclude $c_1 = c_1(\mathcal{L}) \cap [X]$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)