Lemma 42.28.1. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Assume $X$ integral and $\dim _\delta (X) = n$. Let $\mathcal{L}$, $\mathcal{N}$ be invertible on $X$. Choose a nonzero meromorphic section $s$ of $\mathcal{L}$ and a nonzero meromorphic section $t$ of $\mathcal{N}$. Set $\alpha = \text{div}_\mathcal {L}(s)$ and $\beta = \text{div}_\mathcal {N}(t)$. Then
in $\mathop{\mathrm{CH}}\nolimits _{n - 2}(X)$.
Comments (0)
There are also: