The Stacks project

Lemma 42.68.18. Let $R$ be a local ring with residue field $\kappa $. Suppose that we have a short exact sequence of $(2, 1)$-periodic complexes

\[ 0 \to (M_1, \varphi _1, \psi _1) \to (M_2, \varphi _2, \psi _2) \to (M_3, \varphi _3, \psi _3) \to 0 \]

with all $M_ i$ of finite length, and each $(M_1, \varphi _1, \psi _1)$ exact. Then

\[ \det \nolimits _\kappa (M_2, \varphi _2, \psi _2) = \det \nolimits _\kappa (M_1, \varphi _1, \psi _1) \det \nolimits _\kappa (M_3, \varphi _3, \psi _3). \]

in $\kappa ^*$.

Proof. Let us abbreviate $I_{\varphi , i} = \mathop{\mathrm{Im}}(\varphi _ i)$, $K_{\varphi , i} = \mathop{\mathrm{Ker}}(\varphi _ i)$, $I_{\psi , i} = \mathop{\mathrm{Im}}(\psi _ i)$, and $K_{\psi , i} = \mathop{\mathrm{Ker}}(\psi _ i)$. Observe that we have a commutative square

\[ \xymatrix{ & 0 \ar[d] & 0 \ar[d] & 0 \ar[d] & \\ 0 \ar[r] & K_{\varphi , 1} \ar[r] \ar[d] & K_{\varphi , 2} \ar[r] \ar[d] & K_{\varphi , 3} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & M_1 \ar[r] \ar[d] & M_2 \ar[r] \ar[d] & M_3 \ar[r] \ar[d] & 0 \\ 0 \ar[r] & I_{\varphi , 1} \ar[r] \ar[d] & I_{\varphi , 2} \ar[r] \ar[d] & I_{\varphi , 3} \ar[r] \ar[d] & 0 \\ & 0 & 0 & 0 & } \]

of finite length $R$-modules with exact rows and columns. The top row is exact since it can be identified with the sequence $I_{\psi , 1} \to I_{\psi , 2} \to I_{\psi , 3} \to 0$ of images, and similarly for the bottom row. There is a similar diagram involving the modules $I_{\psi , i}$ and $K_{\psi , i}$. By definition $\det _\kappa (M_2, \varphi _2, \psi _2)$ corresponds, up to a sign, to the composition of the left vertical maps in the following diagram

\[ \xymatrix{ \det _\kappa (M_1) \otimes \det _\kappa (M_3) \ar[r]^\gamma \ar[d]^{\gamma ^{-1} \otimes \gamma ^{-1}} & \det _\kappa (M_2) \ar[d]^{\gamma ^{-1}} \\ \det \nolimits _\kappa (K_{\varphi , 1}) \otimes \det \nolimits _\kappa (I_{\varphi , 1}) \otimes \det \nolimits _\kappa (K_{\varphi , 3}) \otimes \det \nolimits _\kappa (I_{\varphi , 3}) \ar[d]^{\sigma \otimes \sigma } \ar[r]^-{\gamma \otimes \gamma } & \det \nolimits _\kappa (K_{\varphi , 2}) \otimes \det \nolimits _\kappa (I_{\varphi , 2}) \ar[d]^\sigma \\ \det \nolimits _\kappa (K_{\psi , 1}) \otimes \det \nolimits _\kappa (I_{\psi , 1}) \otimes \det \nolimits _\kappa (K_{\psi , 3}) \otimes \det \nolimits _\kappa (I_{\psi , 3}) \ar[d]^{\gamma \otimes \gamma } \ar[r]^-{\gamma \otimes \gamma } & \det \nolimits _\kappa (K_{\psi , 2}) \otimes \det \nolimits _\kappa (I_{\psi , 2}) \ar[d]^\gamma \\ \det _\kappa (M_1) \otimes \det _\kappa (M_3) \ar[r]^\gamma & \det _\kappa (M_2) } \]

The top and bottom squares are commutative up to sign by applying Lemma 42.68.6 (2). The middle square is trivially commutative (we are just switching factors). Hence we see that $\det \nolimits _\kappa (M_2, \varphi _2, \psi _2) = \epsilon \det \nolimits _\kappa (M_1, \varphi _1, \psi _1) \det \nolimits _\kappa (M_3, \varphi _3, \psi _3) $ for some sign $\epsilon $. And the sign can be worked out, namely the outer rectangle in the diagram above commutes up to

\begin{eqnarray*} \epsilon & = & (-1)^{\text{length}(I_{\varphi , 1})\text{length}(K_{\varphi , 3}) + \text{length}(I_{\psi , 1})\text{length}(K_{\psi , 3})} \\ & = & (-1)^{\text{length}(I_{\varphi , 1})\text{length}(I_{\psi , 3}) + \text{length}(I_{\psi , 1})\text{length}(I_{\varphi , 3})} \end{eqnarray*}

(proof omitted). It follows easily from this that the signs work out as well. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02PO. Beware of the difference between the letter 'O' and the digit '0'.