The Stacks project

42.68.1 Determinants of finite length modules

The material in this section is related to the material in the paper [determinant] and to the material in the thesis [Joe].

Let $(R, \mathfrak m, \kappa )$ be a local ring. Let $\varphi : M \to M$ be an $R$-linear endomorphism of a finite length $R$-module $M$. In More on Algebra, Section 15.120 we have already defined the determinant $\det _\kappa (\varphi )$ (and the trace and the characteristic polynomial) of $\varphi $ relative to $\kappa $. In this section, we will construct a canonical $1$-dimensional $\kappa $-vector space $\det _\kappa (M)$ such that $\det _\kappa (\varphi : M \to M) : \det _\kappa (M) \to \det _\kappa (M)$ is equal to multiplication by $\det _\kappa (\varphi )$. If $M$ is annihilated by $\mathfrak m$, then $M$ can be viewed as a finite dimension $\kappa $-vector space and then we have $\det _\kappa (M) = \wedge ^ n_\kappa (M)$ where $n = \dim _\kappa (M)$. Our construction will generalize this to all finite length modules over $R$ and if $R$ contains its residue field, then the determinant $\det _\kappa (M)$ will be given by the usual determinant in a suitable sense, see Remark 42.68.9.

Definition 42.68.2. Let $R$ be a local ring with maximal ideal $\mathfrak m$ and residue field $\kappa $. Let $M$ be a finite length $R$-module. Say $l = \text{length}_ R(M)$.

  1. Given elements $x_1, \ldots , x_ r \in M$ we denote $\langle x_1, \ldots , x_ r \rangle = Rx_1 + \ldots + Rx_ r$ the $R$-submodule of $M$ generated by $x_1, \ldots , x_ r$.

  2. We will say an $l$-tuple of elements $(e_1, \ldots , e_ l)$ of $M$ is admissible if $\mathfrak m e_ i \subset \langle e_1, \ldots , e_{i - 1} \rangle $ for $i = 1, \ldots , l$.

  3. A symbol $[e_1, \ldots , e_ l]$ will mean $(e_1, \ldots , e_ l)$ is an admissible $l$-tuple.

  4. An admissible relation between symbols is one of the following:

    1. if $(e_1, \ldots , e_ l)$ is an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle $, then $[e_1, \ldots , e_ l] = 0$,

    2. if $(e_1, \ldots , e_ l)$ is an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a = \lambda e'_ a + x$ with $\lambda \in R^*$, and $x \in \langle e_1, \ldots , e_{a - 1}\rangle $, then

      \[ [e_1, \ldots , e_ l] = \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l] \]

      where $\overline{\lambda } \in \kappa ^*$ is the image of $\lambda $ in the residue field, and

    3. if $(e_1, \ldots , e_ l)$ is an admissible sequence and $\mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle $ then

      \[ [e_1, \ldots , e_ l] = - [e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]. \]
  5. We define the determinant of the finite length $R$-module $M$ to be

    \[ \det \nolimits _\kappa (M) = \left\{ \frac{\kappa \text{-vector space generated by symbols}}{\kappa \text{-linear combinations of admissible relations}} \right\} \]

We stress that always $l = \text{length}_ R(M)$. We also stress that it does not follow that the symbol $[e_1, \ldots , e_ l]$ is additive in the entries (this will typically not be the case). Before we can show that the determinant $\det _\kappa (M)$ actually has dimension $1$ we have to show that it has dimension at most $1$.

Lemma 42.68.3. With notations as above we have $\dim _\kappa (\det _\kappa (M)) \leq 1$.

Proof. Fix an admissible sequence $(f_1, \ldots , f_ l)$ of $M$ such that

\[ \text{length}_ R(\langle f_1, \ldots , f_ i\rangle ) = i \]

for $i = 1, \ldots , l$. Such an admissible sequence exists exactly because $M$ has length $l$. We will show that any element of $\det _\kappa (M)$ is a $\kappa $-multiple of the symbol $[f_1, \ldots , f_ l]$. This will prove the lemma.

Let $(e_1, \ldots , e_ l)$ be an admissible sequence of $M$. It suffices to show that $[e_1, \ldots , e_ l]$ is a multiple of $[f_1, \ldots , f_ l]$. First assume that $\langle e_1, \ldots , e_ l\rangle \not= M$. Then there exists an $i \in [1, \ldots , l]$ such that $e_ i \in \langle e_1, \ldots , e_{i - 1}\rangle $. It immediately follows from the first admissible relation that $[e_1, \ldots , e_ n] = 0$ in $\det _\kappa (M)$. Hence we may assume that $\langle e_1, \ldots , e_ l\rangle = M$. In particular there exists a smallest index $i \in \{ 1, \ldots , l\} $ such that $f_1 \in \langle e_1, \ldots , e_ i\rangle $. This means that $e_ i = \lambda f_1 + x$ with $x \in \langle e_1, \ldots , e_{i - 1}\rangle $ and $\lambda \in R^*$. By the second admissible relation this means that $[e_1, \ldots , e_ l] = \overline{\lambda }[e_1, \ldots , e_{i - 1}, f_1, e_{i + 1}, \ldots , e_ l]$. Note that $\mathfrak m f_1 = 0$. Hence by applying the third admissible relation $i - 1$ times we see that

\[ [e_1, \ldots , e_ l] = (-1)^{i - 1}\overline{\lambda } [f_1, e_1, \ldots , e_{i - 1}, e_{i + 1}, \ldots , e_ l]. \]

Note that it is also the case that $ \langle f_1, e_1, \ldots , e_{i - 1}, e_{i + 1}, \ldots , e_ l\rangle = M$. By induction suppose we have proven that our original symbol is equal to a scalar times

\[ [f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l] \]

for some admissible sequence $(f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l)$ whose elements generate $M$, i.e., with $\langle f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l\rangle = M$. Then we find the smallest $i$ such that $f_{j + 1} \in \langle f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ i\rangle $ and we go through the same process as above to see that

\[ [f_1, \ldots , f_ j, e_{j + 1}, \ldots , e_ l] = (\text{scalar}) [f_1, \ldots , f_ j, f_{j + 1}, e_{j + 1}, \ldots , \hat{e_ i}, \ldots , e_ l] \]

Continuing in this vein we obtain the desired result. $\square$

Before we show that $\det _\kappa (M)$ always has dimension $1$, let us show that it agrees with the usual top exterior power in the case the module is a vector space over $\kappa $.

Lemma 42.68.4. Let $R$ be a local ring with maximal ideal $\mathfrak m$ and residue field $\kappa $. Let $M$ be a finite length $R$-module which is annihilated by $\mathfrak m$. Let $l = \dim _\kappa (M)$. Then the map

\[ \det \nolimits _\kappa (M) \longrightarrow \wedge ^ l_\kappa (M), \quad [e_1, \ldots , e_ l] \longmapsto e_1 \wedge \ldots \wedge e_ l \]

is an isomorphism.

Proof. It is clear that the rule described in the lemma gives a $\kappa $-linear map since all of the admissible relations are satisfied by the usual symbols $e_1 \wedge \ldots \wedge e_ l$. It is also clearly a surjective map. Since by Lemma 42.68.3 the left hand side has dimension at most one we see that the map is an isomorphism. $\square$

Lemma 42.68.5. Let $R$ be a local ring with maximal ideal $\mathfrak m$ and residue field $\kappa $. Let $M$ be a finite length $R$-module. The determinant $\det _\kappa (M)$ defined above is a $\kappa $-vector space of dimension $1$. It is generated by the symbol $[f_1, \ldots , f_ l]$ for any admissible sequence such that $\langle f_1, \ldots f_ l \rangle = M$.

Proof. We know $\det _\kappa (M)$ has dimension at most $1$, and in fact that it is generated by $[f_1, \ldots , f_ l]$, by Lemma 42.68.3 and its proof. We will show by induction on $l = \text{length}(M)$ that it is nonzero. For $l = 1$ it follows from Lemma 42.68.4. Choose a nonzero element $f \in M$ with $\mathfrak m f = 0$. Set $\overline{M} = M /\langle f \rangle $, and denote the quotient map $x \mapsto \overline{x}$. We will define a surjective map

\[ \psi : \det \nolimits _ k(M) \to \det \nolimits _\kappa (\overline{M}) \]

which will prove the lemma since by induction the determinant of $\overline{M}$ is nonzero.

We define $\psi $ on symbols as follows. Let $(e_1, \ldots , e_ l)$ be an admissible sequence. If $f \not\in \langle e_1, \ldots , e_ l \rangle $ then we simply set $\psi ([e_1, \ldots , e_ l]) = 0$. If $f \in \langle e_1, \ldots , e_ l \rangle $ then we choose an $i$ minimal such that $f \in \langle e_1, \ldots , e_ i \rangle $. We may write $e_ i = \lambda f + x$ for some unit $\lambda \in R$ and $x \in \langle e_1, \ldots , e_{i - 1} \rangle $. In this case we set

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^ i \overline{\lambda }[\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l]. \]

Note that it is indeed the case that $(\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l)$ is an admissible sequence in $\overline{M}$, so this makes sense. Let us show that extending this rule $\kappa $-linearly to linear combinations of symbols does indeed lead to a map on determinants. To do this we have to show that the admissible relations are mapped to zero.

Type (a) relations. Suppose we have $(e_1, \ldots , e_ l)$ an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle $. Suppose that $f \in \langle e_1, \ldots , e_ i\rangle $ with $i$ minimal. Then $i \not= a$ and $\overline{e}_ a \in \langle \overline{e}_1, \ldots , \hat{\overline{e}_ i}, \ldots , \overline{e}_{a - 1}\rangle $ if $i < a$ or $\overline{e}_ a \in \langle \overline{e}_1, \ldots , \overline{e}_{a - 1}\rangle $ if $i > a$. Thus the same admissible relation for $\det _\kappa (\overline{M})$ forces the symbol $[\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l]$ to be zero as desired.

Type (b) relations. Suppose we have $(e_1, \ldots , e_ l)$ an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a = \lambda e'_ a + x$ with $\lambda \in R^*$, and $x \in \langle e_1, \ldots , e_{a - 1}\rangle $. Suppose that $f \in \langle e_1, \ldots , e_ i\rangle $ with $i$ minimal. Say $e_ i = \mu f + y$ with $y \in \langle e_1, \ldots , e_{i - 1}\rangle $. If $i < a$ then the desired equality is

\[ (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_{a - 1}, \overline{e}'_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

which follows from $\overline{e}_ a = \lambda \overline{e}'_ a + \overline{x}$ and the corresponding admissible relation for $\det _\kappa (\overline{M})$. If $i > a$ then the desired equality is

\[ (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}'_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \]

which follows from $\overline{e}_ a = \lambda \overline{e}'_ a + \overline{x}$ and the corresponding admissible relation for $\det _\kappa (\overline{M})$. The interesting case is when $i = a$. In this case we have $e_ a = \lambda e'_ a + x = \mu f + y$. Hence also $e'_ a = \lambda ^{-1}(\mu f + y - x)$. Thus we see that

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^ i \overline{\mu } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = \psi ( \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l] ) \]

as desired.

Type (c) relations. Suppose that $(e_1, \ldots , e_ l)$ is an admissible sequence and $\mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle $. Suppose that $f \in \langle e_1, \ldots , e_ i\rangle $ with $i$ minimal. Say $e_ i = \lambda f + x$ with $x \in \langle e_1, \ldots , e_{i - 1}\rangle $. We distinguish $4$ cases:

Case 1: $i < a - 1$. The desired equality is

\begin{align*} & (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \\ & = (-1)^{i + 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \end{align*}

which follows from the type (c) admissible relation for $\det _\kappa (\overline{M})$.

Case 2: $i > a$. The desired equality is

\begin{align*} & (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \\ & = (-1)^{i + 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \end{align*}

which follows from the type (c) admissible relation for $\det _\kappa (\overline{M})$.

Case 3: $i = a$. We write $e_ a = \lambda f + \mu e_{a - 1} + y$ with $y \in \langle e_1, \ldots , e_{a - 2}\rangle $. Then

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^ a \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

by definition. If $\overline{\mu }$ is nonzero, then we have $e_{a - 1} = - \mu ^{-1} \lambda f + \mu ^{-1}e_ a - \mu ^{-1} y$ and we obtain

\[ \psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^ a \overline{\mu ^{-1}\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

by definition. Since in $\overline{M}$ we have $\overline{e}_ a = \mu \overline{e}_{a - 1} + \overline{y}$ we see the two outcomes are equal by relation (a) for $\det _\kappa (\overline{M})$. If on the other hand $\overline{\mu }$ is zero, then we can write $e_ a = \lambda f + y$ with $y \in \langle e_1, \ldots , e_{a - 2}\rangle $ and we have

\[ \psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^ a \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

which is equal to $\psi ([e_1, \ldots , e_ l])$.

Case 4: $i = a - 1$. Here we have

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^{a - 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \ldots , \overline{e}_ l] \]

by definition. If $f \not\in \langle e_1, \ldots , e_{a - 2}, e_ a \rangle $ then

\[ \psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^{a + 1}\overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \ldots , \overline{e}_ l] \]

Since $(-1)^{a - 1} = (-1)^{a + 1}$ the two expressions are the same. Finally, assume $f \in \langle e_1, \ldots , e_{a - 2}, e_ a \rangle $. In this case we see that $e_{a - 1} = \lambda f + x$ with $x \in \langle e_1, \ldots , e_{a - 2}\rangle $ and $e_ a = \mu f + y$ with $y \in \langle e_1, \ldots , e_{a - 2}\rangle $ for units $\lambda , \mu \in R$. We conclude that both $e_ a \in \langle e_1, \ldots , e_{a - 1} \rangle $ and $e_{a - 1} \in \langle e_1, \ldots , e_{a - 2}, e_ a\rangle $. In this case a relation of type (a) applies to both $[e_1, \ldots , e_ l]$ and $[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]$ and the compatibility of $\psi $ with these shown above to see that both

\[ \psi ([e_1, \ldots , e_ l]) \quad \text{and}\quad \psi ([e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) \]

are zero, as desired.

At this point we have shown that $\psi $ is well defined, and all that remains is to show that it is surjective. To see this let $(\overline{f}_2, \ldots , \overline{f}_ l)$ be an admissible sequence in $\overline{M}$. We can choose lifts $f_2, \ldots , f_ l \in M$, and then $(f, f_2, \ldots , f_ l)$ is an admissible sequence in $M$. Since $\psi ([f, f_2, \ldots , f_ l]) = [f_2, \ldots , f_ l]$ we win. $\square$

Let $R$ be a local ring with maximal ideal $\mathfrak m$ and residue field $\kappa $. Note that if $\varphi : M \to N$ is an isomorphism of finite length $R$-modules, then we get an isomorphism

\[ \det \nolimits _\kappa (\varphi ) : \det \nolimits _\kappa (M) \to \det \nolimits _\kappa (N) \]

simply by the rule

\[ \det \nolimits _\kappa (\varphi )([e_1, \ldots , e_ l]) = [\varphi (e_1), \ldots , \varphi (e_ l)] \]

for any symbol $[e_1, \ldots , e_ l]$ for $M$. Hence we see that $\det \nolimits _\kappa $ is a functor

42.68.5.1
\begin{equation} \label{chow-equation-functor} \left\{ \begin{matrix} \text{finite length }R\text{-modules} \\ \text{with isomorphisms} \end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} 1\text{-dimensional }\kappa \text{-vector spaces} \\ \text{with isomorphisms} \end{matrix} \right\} \end{equation}

This is typical for a “determinant functor” (see [Knudsen]), as is the following additivity property.

Lemma 42.68.6. Let $(R, \mathfrak m, \kappa )$ be a local ring. For every short exact sequence

\[ 0 \to K \to L \to M \to 0 \]

of finite length $R$-modules there exists a canonical isomorphism

\[ \gamma _{K \to L \to M} : \det \nolimits _\kappa (K) \otimes _\kappa \det \nolimits _\kappa (M) \longrightarrow \det \nolimits _\kappa (L) \]

defined by the rule on nonzero symbols

\[ [e_1, \ldots , e_ k] \otimes [\overline{f}_1, \ldots , \overline{f}_ m] \longrightarrow [e_1, \ldots , e_ k, f_1, \ldots , f_ m] \]

with the following properties:

  1. For every isomorphism of short exact sequences, i.e., for every commutative diagram

    \[ \xymatrix{ 0 \ar[r] & K \ar[r] \ar[d]^ u & L \ar[r] \ar[d]^ v & M \ar[r] \ar[d]^ w & 0 \\ 0 \ar[r] & K' \ar[r] & L' \ar[r] & M' \ar[r] & 0 } \]

    with short exact rows and isomorphisms $u, v, w$ we have

    \[ \gamma _{K' \to L' \to M'} \circ (\det \nolimits _\kappa (u) \otimes \det \nolimits _\kappa (w)) = \det \nolimits _\kappa (v) \circ \gamma _{K \to L \to M}, \]
  2. for every commutative square of finite length $R$-modules with exact rows and columns

    \[ \xymatrix{ & 0 \ar[d] & 0 \ar[d] & 0 \ar[d] & \\ 0 \ar[r] & A \ar[r] \ar[d] & B \ar[r] \ar[d] & C \ar[r] \ar[d] & 0 \\ 0 \ar[r] & D \ar[r] \ar[d] & E \ar[r] \ar[d] & F \ar[r] \ar[d] & 0 \\ 0 \ar[r] & G \ar[r] \ar[d] & H \ar[r] \ar[d] & I \ar[r] \ar[d] & 0 \\ & 0 & 0 & 0 & } \]

    the following diagram is commutative

    \[ \xymatrix{ \det \nolimits _\kappa (A) \otimes \det \nolimits _\kappa (C) \otimes \det \nolimits _\kappa (G) \otimes \det \nolimits _\kappa (I) \ar[dd]_{\epsilon } \ar[rrr]_-{\gamma _{A \to B \to C} \otimes \gamma _{G \to H \to I}} & & & \det \nolimits _\kappa (B) \otimes \det \nolimits _\kappa (H) \ar[d]^{\gamma _{B \to E \to H}} \\ & & & \det \nolimits _\kappa (E) \\ \det \nolimits _\kappa (A) \otimes \det \nolimits _\kappa (G) \otimes \det \nolimits _\kappa (C) \otimes \det \nolimits _\kappa (I) \ar[rrr]^-{\gamma _{A \to D \to G} \otimes \gamma _{C \to F \to I}} & & & \det \nolimits _\kappa (D) \otimes \det \nolimits _\kappa (F) \ar[u]_{\gamma _{D \to E \to F}} } \]

    where $\epsilon $ is the switch of the factors in the tensor product times $(-1)^{cg}$ with $c = \text{length}_ R(C)$ and $g = \text{length}_ R(G)$, and

  3. the map $\gamma _{K \to L \to M}$ agrees with the usual isomorphism if $0 \to K \to L \to M \to 0$ is actually a short exact sequence of $\kappa $-vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of the map $\gamma _{K \to L \to M}$ is simply that if $(e_1, \ldots , e_ l)$ is an admissible sequence in $K$, and $(\overline{f}_1, \ldots , \overline{f}_ m)$ is an admissible sequence in $M$, then it is not guaranteed that $(e_1, \ldots , e_ l, f_1, \ldots , f_ m)$ is an admissible sequence in $L$ (where of course $f_ i \in L$ signifies a lift of $\overline{f}_ i$). However, if the symbol $[e_1, \ldots , e_ l]$ is nonzero in $\det _\kappa (K)$, then necessarily $K = \langle e_1, \ldots , e_ k\rangle $ (see proof of Lemma 42.68.3), and in this case it is true that $(e_1, \ldots , e_ k, f_1, \ldots , f_ m)$ is an admissible sequence. Moreover, by the admissible relations of type (b) for $\det _\kappa (L)$ we see that the value of $[e_1, \ldots , e_ k, f_1, \ldots , f_ m]$ in $\det _\kappa (L)$ is independent of the choice of the lifts $f_ i$ in this case also. Given this remark, it is clear that an admissible relation for $e_1, \ldots , e_ k$ in $K$ translates into an admissible relation among $e_1, \ldots , e_ k, f_1, \ldots , f_ m$ in $L$, and similarly for an admissible relation among the $\overline{f}_1, \ldots , \overline{f}_ m$. Thus $\gamma $ defines a linear map of vector spaces as claimed in the lemma.

By Lemma 42.68.5 we know $\det _\kappa (L)$ is generated by any single symbol $[x_1, \ldots , x_{k + m}]$ such that $(x_1, \ldots , x_{k + m})$ is an admissible sequence with $L = \langle x_1, \ldots , x_{k + m}\rangle $. Hence it is clear that the map $\gamma _{K \to L \to M}$ is surjective and hence an isomorphism.

Property (1) holds because

\begin{eqnarray*} & & \det \nolimits _\kappa (v)([e_1, \ldots , e_ k, f_1, \ldots , f_ m]) \\ & = & [v(e_1), \ldots , v(e_ k), v(f_1), \ldots , v(f_ m)] \\ & = & \gamma _{K' \to L' \to M'}([u(e_1), \ldots , u(e_ k)] \otimes [w(f_1), \ldots , w(f_ m)]). \end{eqnarray*}

Property (2) means that given a symbol $[\alpha _1, \ldots , \alpha _ a]$ generating $\det _\kappa (A)$, a symbol $[\gamma _1, \ldots , \gamma _ c]$ generating $\det _\kappa (C)$, a symbol $[\zeta _1, \ldots , \zeta _ g]$ generating $\det _\kappa (G)$, and a symbol $[\iota _1, \ldots , \iota _ i]$ generating $\det _\kappa (I)$ we have

\begin{eqnarray*} & & [\alpha _1, \ldots , \alpha _ a, \tilde\gamma _1, \ldots , \tilde\gamma _ c, \tilde\zeta _1, \ldots , \tilde\zeta _ g, \tilde\iota _1, \ldots , \tilde\iota _ i] \\ & = & (-1)^{cg} [\alpha _1, \ldots , \alpha _ a, \tilde\zeta _1, \ldots , \tilde\zeta _ g, \tilde\gamma _1, \ldots , \tilde\gamma _ c, \tilde\iota _1, \ldots , \tilde\iota _ i] \end{eqnarray*}

(for suitable lifts $\tilde{x}$ in $E$) in $\det _\kappa (E)$. This holds because we may use the admissible relations of type (c) $cg$ times in the following order: move the $\tilde\zeta _1$ past the elements $\tilde\gamma _ c, \ldots , \tilde\gamma _1$ (allowed since $\mathfrak m\tilde\zeta _1 \subset A$), then move $\tilde\zeta _2$ past the elements $\tilde\gamma _ c, \ldots , \tilde\gamma _1$ (allowed since $\mathfrak m\tilde\zeta _2 \subset A + R\tilde\zeta _1$), and so on.

Part (3) of the lemma is obvious. This finishes the proof. $\square$

We can use the maps $\gamma $ of the lemma to define more general maps $\gamma $ as follows. Suppose that $(R, \mathfrak m, \kappa )$ is a local ring. Let $M$ be a finite length $R$-module and suppose we are given a finite filtration (see Homology, Definition 12.19.1)

\[ 0 = F^ m \subset F^{m - 1} \subset \ldots \subset F^{n + 1} \subset F^ n = M \]

then there is a well defined and canonical isomorphism

\[ \gamma _{(M, F)} : \det \nolimits _\kappa (F^{m - 1}/F^ m) \otimes _\kappa \ldots \otimes _ k \det \nolimits _\kappa (F^ n/F^{n + 1}) \longrightarrow \det \nolimits _\kappa (M) \]

To construct it we use isomorphisms of Lemma 42.68.6 coming from the short exact sequences $0 \to F^{i - 1}/F^ i \to M/F^ i \to M/F^{i - 1} \to 0$. Part (2) of Lemma 42.68.6 with $G = 0$ shows we obtain the same isomorphism if we use the short exact sequences $0 \to F^ i \to F^{i - 1} \to F^{i - 1}/F^ i \to 0$.

Here is another typical result for determinant functors. It is not hard to show. The tricky part is usually to show the existence of a determinant functor.

Lemma 42.68.7. Let $(R, \mathfrak m, \kappa )$ be any local ring. The functor

\[ \det \nolimits _\kappa : \left\{ \begin{matrix} \text{finite length }R\text{-modules} \\ \text{with isomorphisms} \end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} 1\text{-dimensional }\kappa \text{-vector spaces} \\ \text{with isomorphisms} \end{matrix} \right\} \]

endowed with the maps $\gamma _{K \to L \to M}$ is characterized by the following properties

  1. its restriction to the subcategory of modules annihilated by $\mathfrak m$ is isomorphic to the usual determinant functor (see Lemma 42.68.4), and

  2. (1), (2) and (3) of Lemma 42.68.6 hold.

Proof. Omitted. $\square$

Lemma 42.68.8. Let $(R', \mathfrak m') \to (R, \mathfrak m)$ be a local ring homomorphism which induces an isomorphism on residue fields $\kappa $. Then for every finite length $R$-module the restriction $M_{R'}$ is a finite length $R'$-module and there is a canonical isomorphism

\[ \det \nolimits _{R, \kappa }(M) \longrightarrow \det \nolimits _{R', \kappa }(M_{R'}) \]

This isomorphism is functorial in $M$ and compatible with the isomorphisms $\gamma _{K \to L \to M}$ of Lemma 42.68.6 defined for $\det _{R, \kappa }$ and $\det _{R', \kappa }$.

Proof. If the length of $M$ as an $R$-module is $l$, then the length of $M$ as an $R'$-module (i.e., $M_{R'}$) is $l$ as well, see Algebra, Lemma 10.52.12. Note that an admissible sequence $x_1, \ldots , x_ l$ of $M$ over $R$ is an admissible sequence of $M$ over $R'$ as $\mathfrak m'$ maps into $\mathfrak m$. The isomorphism is obtained by mapping the symbol $[x_1, \ldots , x_ l] \in \det \nolimits _{R, \kappa }(M)$ to the corresponding symbol $[x_1, \ldots , x_ l] \in \det \nolimits _{R', \kappa }(M)$. It is immediate to verify that this is functorial for isomorphisms and compatible with the isomorphisms $\gamma $ of Lemma 42.68.6. $\square$

Remark 42.68.9. Let $(R, \mathfrak m, \kappa )$ be a local ring and assume either the characteristic of $\kappa $ is zero or it is $p$ and $p R = 0$. Let $M_1, \ldots , M_ n$ be finite length $R$-modules. We will show below that there exists an ideal $I \subset \mathfrak m$ annihilating $M_ i$ for $i = 1, \ldots , n$ and a section $\sigma : \kappa \to R/I$ of the canonical surjection $R/I \to \kappa $. The restriction $M_{i, \kappa }$ of $M_ i$ via $\sigma $ is a $\kappa $-vector space of dimension $l_ i = \text{length}_ R(M_ i)$ and using Lemma 42.68.8 we see that

\[ \det \nolimits _\kappa (M_ i) = \wedge _\kappa ^{l_ i}(M_{i, \kappa }) \]

These isomorphisms are compatible with the isomorphisms $\gamma _{K \to M \to L}$ of Lemma 42.68.6 for short exact sequences of finite length $R$-modules annihilated by $I$. The conclusion is that verifying a property of $\det _\kappa $ often reduces to verifying corresponding properties of the usual determinant on the category finite dimensional vector spaces.

For $I$ we can take the annihilator (Algebra, Definition 10.40.3) of the module $M = \bigoplus M_ i$. In this case we see that $R/I \subset \text{End}_ R(M)$ hence has finite length. Thus $R/I$ is an Artinian local ring with residue field $\kappa $. Since an Artinian local ring is complete we see that $R/I$ has a coefficient ring by the Cohen structure theorem (Algebra, Theorem 10.160.8) which is a field by our assumption on $R$.

Here is a case where we can compute the determinant of a linear map. In fact there is nothing mysterious about this in any case, see Example 42.68.11 for a random example.

Lemma 42.68.10. Let $R$ be a local ring with residue field $\kappa $. Let $u \in R^*$ be a unit. Let $M$ be a module of finite length over $R$. Denote $u_ M : M \to M$ the map multiplication by $u$. Then

\[ \det \nolimits _\kappa (u_ M) : \det \nolimits _\kappa (M) \longrightarrow \det \nolimits _\kappa (M) \]

is multiplication by $\overline{u}^ l$ where $l = \text{length}_ R(M)$ and $\overline{u} \in \kappa ^*$ is the image of $u$.

Proof. Denote $f_ M \in \kappa ^*$ the element such that $\det \nolimits _\kappa (u_ M) = f_ M \text{id}_{\det \nolimits _\kappa (M)}$. Suppose that $0 \to K \to L \to M \to 0$ is a short exact sequence of finite $R$-modules. Then we see that $u_ k$, $u_ L$, $u_ M$ give an isomorphism of short exact sequences. Hence by Lemma 42.68.6 (1) we conclude that $f_ K f_ M = f_ L$. This means that by induction on length it suffices to prove the lemma in the case of length $1$ where it is trivial. $\square$

Example 42.68.11. Consider the local ring $R = \mathbf{Z}_ p$. Set $M = \mathbf{Z}_ p/(p^2) \oplus \mathbf{Z}_ p/(p^3)$. Let $u : M \to M$ be the map given by the matrix

\[ u = \left( \begin{matrix} a & b \\ pc & d \end{matrix} \right) \]

where $a, b, c, d \in \mathbf{Z}_ p$, and $a, d \in \mathbf{Z}_ p^*$. In this case $\det _\kappa (u)$ equals multiplication by $a^2d^3 \bmod p \in \mathbf{F}_ p^*$. This can easily be seen by consider the effect of $u$ on the symbol $[p^2e, pe, pf, e, f]$ where $e = (0 , 1) \in M$ and $f = (1, 0) \in M$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02P5. Beware of the difference between the letter 'O' and the digit '0'.