Lemma 29.49.7. Let $X$ be an integral separated scheme. Let $Z_1$, $Z_2$ be distinct irreducible closed subsets of $X$. Let $\eta _ i$ be the generic point of $Z_ i$. If $Z_1 \not\subset Z_2$, then $\mathcal{O}_{X, \eta _1} \not\subset \mathcal{O}_{X, \eta _2}$ as subrings of $R(X)$. In particular, if $Z_1 = \{ x\} $ consists of one closed point $x$, there exists a function regular in a neighborhood of $x$ which is not in $\mathcal{O}_{X, \eta _{2}}$.
Proof. First observe that under the assumption of $X$ being separated, there is a unique map of schemes $\mathop{\mathrm{Spec}}(\mathcal{O}_{X, \eta _2}) \to X$ over $X$ such that the composition
is the canonical map $\mathop{\mathrm{Spec}}(R(X)) \to X$. Namely, there is the canonical map $can : \mathop{\mathrm{Spec}}(\mathcal{O}_{X, \eta _2}) \to X$, see Schemes, Equation (26.13.1.1). Given a second morphism $a$ to $X$, we have that $a$ agrees with $can$ on the generic point of $\mathop{\mathrm{Spec}}(\mathcal{O}_{X, \eta _2})$ by assumption. Now $X$ being separated guarantees that the subset in $\mathop{\mathrm{Spec}}(\mathcal{O}_{X, \eta _2})$ where these two maps agree is closed, see Schemes, Lemma 26.21.5. Hence $a = can$ on all of $\mathop{\mathrm{Spec}}(\mathcal{O}_{X, \eta _2})$.
Assume $Z_1 \not\subset Z_2$ and assume on the contrary that $\mathcal{O}_{X, \eta _{1}} \subset \mathcal{O}_{X, \eta _{2}}$ as subrings of $R(X)$. Then we would obtain a second morphism
By the above this composition would have to be equal to $can$. This implies that $\eta _2$ specializes to $\eta _1$ (see Schemes, Lemma 26.13.2). But this contradicts our assumption $Z_1 \not\subset Z_2$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3209 by Dario Weißmann on
Comment #3313 by Johan on