The Stacks project

Lemma 26.21.5. Let $X$, $Y$ be schemes over $S$. Let $a, b : X \to Y$ be morphisms of schemes over $S$. There exists a largest locally closed subscheme $Z \subset X$ such that $a|_ Z = b|_ Z$. In fact $Z$ is the equalizer of $(a, b)$. Moreover, if $Y$ is separated over $S$, then $Z$ is a closed subscheme.

Proof. The equalizer of $(a, b)$ is for categorical reasons the fibre product $Z$ in the following diagram

\[ \xymatrix{ Z = Y \times _{(Y \times _ S Y)} X \ar[r] \ar[d] & X \ar[d]^{(a , b)} \\ Y \ar[r]^-{\Delta _{Y/S}} & Y \times _ S Y } \]

Thus the lemma follows from Lemmas 26.18.2, 26.21.2 and Definition 26.21.3. $\square$


Comments (2)

Comment #7077 by Zeyn Sahilliogullari on

Is "locally closed subscheme" explicitly defined elsewhere in the stacks project?

Comment #7089 by Zeyn Sahilliogullari on

@#7077 "locally closed subscheme" is defined at the end of the section on scheme immersions:
https://stacks.math.columbia.edu/tag/01IM

There are also:

  • 18 comment(s) on Section 26.21: Separation axioms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01KM. Beware of the difference between the letter 'O' and the digit '0'.