Lemma 20.11.11. Let $f : X \to Y$ be a morphism of ringed spaces. Assume $f$ is flat. Then $f_*\mathcal{I}$ is an injective $\mathcal{O}_ Y$-module for any injective $\mathcal{O}_ X$-module $\mathcal{I}$.
Proof. In this case the functor $f^*$ transforms injections into injections (Modules, Lemma 17.20.2). Hence the result follows from Homology, Lemma 12.29.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)