Lemma 17.20.2. Let $f : X \to Y$ be a flat morphism of ringed spaces. Then the pullback functor $f^* : \textit{Mod}(\mathcal{O}_ Y) \to \textit{Mod}(\mathcal{O}_ X)$ is exact.
Proof. The functor $f^*$ is the composition of the exact functor $f^{-1} : \textit{Mod}(\mathcal{O}_ Y) \to \textit{Mod}(f^{-1}\mathcal{O}_ Y)$ and the change of rings functor
\[ \textit{Mod}(f^{-1}\mathcal{O}_ Y) \to \textit{Mod}(\mathcal{O}_ X), \quad \mathcal{F} \longmapsto \mathcal{F} \otimes _{f^{-1}\mathcal{O}_ Y} \mathcal{O}_ X. \]
Thus the result follows from the discussion following Definition 17.20.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)