Lemma 10.113.1. Let $R \to S$ be a ring map. Let $\mathfrak q$ be a prime of $S$ lying over the prime $\mathfrak p$ of $R$. Assume that
$R$ is Noetherian,
$R \to S$ is of finite type,
$R$, $S$ are domains, and
$R \subset S$.
Recall the definitions of catenary (Definition 10.105.1) and universally catenary (Definition 10.105.3).
Lemma 10.113.1. Let $R \to S$ be a ring map. Let $\mathfrak q$ be a prime of $S$ lying over the prime $\mathfrak p$ of $R$. Assume that
$R$ is Noetherian,
$R \to S$ is of finite type,
$R$, $S$ are domains, and
$R \subset S$.
Then we have
with equality if $R$ is universally catenary.
Proof. Suppose that $R \subset S' \subset S$, where $S'$ is a finitely generated $R$-subalgebra of $S$. In this case set $\mathfrak q' = S' \cap \mathfrak q$. The lemma for the ring maps $R \to S'$ and $S' \to S$ implies the lemma for $R \to S$ by additivity of transcendence degree in towers of fields (Fields, Lemma 9.26.5). Hence we can use induction on the number of generators of $S$ over $R$ and reduce to the case where $S$ is generated by one element over $R$.
Case I: $S = R[x]$ is a polynomial algebra over $R$. In this case we have $\text{trdeg}_ R(S) = 1$. Also $R \to S$ is flat and hence
see Lemma 10.112.7. Let $\mathfrak r = \mathfrak pS$. Then $\text{trdeg}_{\kappa (\mathfrak p)} \kappa (\mathfrak q) = 1$ is equivalent to $\mathfrak q = \mathfrak r$, and implies that $\dim (S_{\mathfrak q}/\mathfrak pS_{\mathfrak q}) = 0$. In the same vein $\text{trdeg}_{\kappa (\mathfrak p)} \kappa (\mathfrak q) = 0$ is equivalent to having a strict inclusion $\mathfrak r \subset \mathfrak q$, which implies that $\dim (S_{\mathfrak q}/\mathfrak pS_{\mathfrak q}) = 1$. Thus we are done with case I with equality in every instance.
Case II: $S = R[x]/\mathfrak n$ with $\mathfrak n \not= 0$. In this case we have $\text{trdeg}_ R(S) = 0$. Denote $\mathfrak q' \subset R[x]$ the prime corresponding to $\mathfrak q$. Thus we have
By the previous case we have $\dim ((R[x])_{\mathfrak q'}) = \dim (R_{\mathfrak p}) + 1 - \text{trdeg}_{\kappa (\mathfrak p)} \kappa (\mathfrak q)$. Since $\mathfrak n \not= 0$ we see that the dimension of $S_{\mathfrak q}$ decreases by at least one, see Lemma 10.60.13, which proves the inequality of the lemma. To see the equality in case $R$ is universally catenary note that $\mathfrak n \subset R[x]$ is a height one prime as it corresponds to a nonzero prime in $F[x]$ where $F$ is the fraction field of $R$. Hence any maximal chain of primes in $S_\mathfrak q = R[x]_{\mathfrak q'}/\mathfrak nR[x]_{\mathfrak q'}$ corresponds to a maximal chain of primes with length 1 greater between $\mathfrak q'$ and $(0)$ in $R[x]$. If $R$ is universally catenary these all have the same length equal to the height of $\mathfrak q'$. This proves that $\dim (S_\mathfrak q) = \dim (R[x]_{\mathfrak q'}) - 1$ and this implies equality holds as desired. $\square$
The following lemma says that generically finite maps tend to be quasi-finite in codimension $1$.
Lemma 10.113.2. Let $A \to B$ be a ring map. Assume
$A \subset B$ is an extension of domains,
the induced extension of fraction fields is finite,
$A$ is Noetherian, and
$A \to B$ is of finite type.
Let $\mathfrak p \subset A$ be a prime of height $1$. Then there are at most finitely many primes of $B$ lying over $\mathfrak p$ and they all have height $1$.
Proof. By the dimension formula (Lemma 10.113.1) for any prime $\mathfrak q$ lying over $\mathfrak p$ we have
As the domain $B_\mathfrak q$ has at least $2$ prime ideals we see that $\dim (B_{\mathfrak q}) \geq 1$. We conclude that $\dim (B_{\mathfrak q}) = 1$ and that the extension $\kappa (\mathfrak p) \subset \kappa (\mathfrak q)$ is algebraic. Hence $\mathfrak q$ defines a closed point of its fibre $\mathop{\mathrm{Spec}}(B \otimes _ A \kappa (\mathfrak p))$, see Lemma 10.35.9. Since $B \otimes _ A \kappa (\mathfrak p)$ is a Noetherian ring the fibre $\mathop{\mathrm{Spec}}(B \otimes _ A \kappa (\mathfrak p))$ is a Noetherian topological space, see Lemma 10.31.5. A Noetherian topological space consisting of closed points is finite, see for example Topology, Lemma 5.9.2. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (4)
Comment #7370 by XYETALE on
Comment #7396 by Johan on
Comment #8461 by M on
Comment #9077 by Stacks project on