Lemma 10.131.11. Let $R \to S$ be a ring map. Let $I \subset S$ be an ideal. Let $n \geq 1$ be an integer. Set $S' = S/I^{n + 1}$. The map $\Omega _{S/R} \to \Omega _{S'/R}$ induces an isomorphism
\[ \Omega _{S/R} \otimes _ S S/I^ n \longrightarrow \Omega _{S'/R} \otimes _{S'} S/I^ n. \]
Comments (0)
There are also: