Example 10.35.7. Let $A$ be an infinite set. For each $\alpha \in A$, let $k_\alpha $ be a field. We claim that $R = \prod _{\alpha \in A} k_\alpha $ is Jacobson. First, note that any element $f \in R$ has the form $f = ue$, with $u \in R$ a unit and $e\in R$ an idempotent (left to the reader). Hence $D(f) = D(e)$, and $R_ f = R_ e = R/(1-e)$ is a quotient of $R$. Actually, any ring with this property is Jacobson. Namely, say $\mathfrak p \subset R$ is a prime ideal and $f \in R$, $f \not\in \mathfrak p$. We have to find a maximal ideal $\mathfrak m$ of $R$ such that $\mathfrak p \subset \mathfrak m$ and $f \not\in \mathfrak m$. Because $R_ f$ is a quotient of $R$ we see that any maximal ideal of $R_ f$ corresponds to a maximal ideal of $R$ not containing $f$. Hence the result follows by choosing a maximal ideal of $R_ f$ containing $\mathfrak p R_ f$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: