Lemma 115.4.5. Let $S$ be a multiplicative set of $A$. Then the map
\[ f: \mathop{\mathrm{Spec}}(S^{-1}A)\longrightarrow \mathop{\mathrm{Spec}}(A) \]
induced by the canonical ring map $A \to S^{-1}A$ is a homeomorphism onto its image and $\mathop{\mathrm{Im}}(f) = \{ \mathfrak p \in \mathop{\mathrm{Spec}}(A) : \mathfrak p\cap S = \emptyset \} $.
Comments (3)
Comment #589 by Wei Xu on
Comment #590 by Wei Xu on
Comment #601 by Johan on