Definition 94.12.1. Let $S$ be a base scheme contained in $\mathit{Sch}_{fppf}$. An algebraic stack over $S$ is a category
over $(\mathit{Sch}/S)_{fppf}$ with the following properties:
The category $\mathcal{X}$ is a stack in groupoids over $(\mathit{Sch}/S)_{fppf}$.
The diagonal $\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is representable by algebraic spaces.
There exists a scheme $U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$ and a $1$-morphism $(\mathit{Sch}/U)_{fppf} \to \mathcal{X}$ which is surjective and smooth1.
Comments (0)
There are also: