The Stacks project

Definition 34.9.1. Let $T$ be a scheme. An fpqc covering of $T$ is a family of morphisms $\{ f_ i : T_ i \to T\} _{i \in I}$ of schemes such that each $f_ i$ is flat and such that for every affine open $U \subset T$ there exists $n \geq 0$, a map $a : \{ 1, \ldots , n\} \to I$ and affine opens $V_ j \subset T_{a(j)}$, $j = 1, \ldots , n$ with $\bigcup _{j = 1}^ n f_{a(j)}(V_ j) = U$.


Comments (4)

Comment #6276 by Owen on

is a fpqc covering, but not according to this definition (here denotes the local ring at the origin).

Comment #6280 by Owen on

but Lemma 34.9.2 cannot be true… the only open of that contains all the closed points of is itself, and this is not an affine variety ().

Comment #6281 by on

The map in definition needn't be injective.

There are also:

  • 8 comment(s) on Section 34.9: The fpqc topology

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 022B. Beware of the difference between the letter 'O' and the digit '0'.