Lemma 34.3.14. Let $S$ be a scheme. Let $\mathit{Sch}_{Zar}$ be a big Zariski site containing $S$. The inclusion functor $S_{Zar} \to (\mathit{Sch}/S)_{Zar}$ satisfies the hypotheses of Sites, Lemma 7.21.8 and hence induces a morphism of sites
and a morphism of topoi
such that $\pi _ S \circ i_ S = \text{id}$. Moreover, $i_ S = i_{\text{id}_ S}$ with $i_{\text{id}_ S}$ as in Lemma 34.3.13. In particular the functor $i_ S^{-1} = \pi _{S, *}$ is described by the rule $i_ S^{-1}(\mathcal{G})(U/S) = \mathcal{G}(U/S)$.
Comments (0)
There are also: