The Stacks project

27.21 Projective bundles

Let $S$ be a scheme. Let $\mathcal{E}$ be a quasi-coherent sheaf of $\mathcal{O}_ S$-modules. By Modules, Lemma 17.21.6 the symmetric algebra $\text{Sym}(\mathcal{E})$ of $\mathcal{E}$ over $\mathcal{O}_ S$ is a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras. Note that it is generated in degree $1$ over $\mathcal{O}_ S$. Hence it makes sense to apply the construction of the previous section to it, specifically Lemmas 27.16.5 and 27.16.11.

Definition 27.21.1. Let $S$ be a scheme. Let $\mathcal{E}$ be a quasi-coherent $\mathcal{O}_ S$-module1. We denote

\[ \pi : \mathbf{P}(\mathcal{E}) = \underline{\text{Proj}}_ S(\text{Sym}(\mathcal{E})) \longrightarrow S \]

and we call it the projective bundle associated to $\mathcal{E}$. The symbol $\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n)$ indicates the invertible $\mathcal{O}_{\mathbf{P}(\mathcal{E})}$-module of Lemma 27.16.11 and is called the $n$th twist of the structure sheaf.

According to Lemma 27.15.5 there are canonical $\mathcal{O}_ S$-module homomorphisms

\[ \text{Sym}^ n(\mathcal{E}) \longrightarrow \pi _*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n) \quad \text{equivalently}\quad \pi ^*\text{Sym}^ n(\mathcal{E}) \longrightarrow \mathcal{O}_{\mathbf{P}(\mathcal{E})}(n) \]

for all $n \geq 0$. In particular, for $n = 1$ we have

\[ \mathcal{E} \longrightarrow \pi _*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1) \quad \text{equivalently}\quad \pi ^*\mathcal{E} \longrightarrow \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1) \]

and the map $\pi ^*\mathcal{E} \to \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$ is a surjection by Lemma 27.16.11. This is a good way to remember how we have normalized our construction of $\mathbf{P}(\mathcal{E})$.

Warning: In some references the scheme $\mathbf{P}(\mathcal{E})$ is only defined for $\mathcal{E}$ finite locally free on $S$. Moreover sometimes $\mathbf{P}(\mathcal{E})$ is actually defined as our $\mathbf{P}(\mathcal{E}^\vee )$ where $\mathcal{E}^\vee $ is the dual of $\mathcal{E}$ (and this is done only when $\mathcal{E}$ is finite locally free).

Let $S$, $\mathcal{E}$, $\mathbf{P}(\mathcal{E}) \to S$ be as in Definition 27.21.1. Let $f : T \to S$ be a scheme over $S$. Let $\psi : f^*\mathcal{E} \to \mathcal{L}$ be a surjection where $\mathcal{L}$ is an invertible $\mathcal{O}_ T$-module. The induced graded $\mathcal{O}_ T$-algebra map

\[ f^*\text{Sym}(\mathcal{E}) = \text{Sym}(f^*\mathcal{E}) \to \text{Sym}(\mathcal{L}) = \bigoplus \nolimits _{n \geq 0} \mathcal{L}^{\otimes n} \]

corresponds to a morphism

\[ \varphi _{\mathcal{L}, \psi } : T \longrightarrow \mathbf{P}(\mathcal{E}) \]

over $S$ by our construction of the relative Proj as the scheme representing the functor $F$ in Section 27.16. On the other hand, given a morphism $\varphi : T \to \mathbf{P}(\mathcal{E})$ over $S$ we can set $\mathcal{L} = \varphi ^*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$ and $\psi : f^*\mathcal{E} \to \mathcal{L}$ equal to the pullback by $\varphi $ of the canonical surjection $\pi ^*\mathcal{E} \to \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$. By Lemma 27.16.11 these constructions are inverse bijections between the set of isomorphism classes of pairs $(\mathcal{L}, \psi )$ and the set of morphisms $\varphi : T \to \mathbf{P}(\mathcal{E})$ over $S$. Thus we see that $\mathbf{P}(\mathcal{E})$ represents the functor which associates to $f : T \to S$ the set of $\mathcal{O}_ T$-module quotients of $f^*\mathcal{E}$ which are locally free of rank $1$.

Example 27.21.2 (Projective space of a vector space). Let $k$ be a field. Let $V$ be a $k$-vector space. The corresponding projective space is the $k$-scheme

\[ \mathbf{P}(V) = \text{Proj}(\text{Sym}(V)) \]

where $\text{Sym}(V)$ is the symmetric algebra on $V$ over $k$. Of course we have $\mathbf{P}(V) \cong \mathbf{P}^ n_ k$ if $\dim (V) = n + 1$ because then the symmetric algebra on $V$ is isomorphic to a polynomial ring in $n + 1$ variables. If we think of $V$ as a quasi-coherent module on $\mathop{\mathrm{Spec}}(k)$, then $\mathbf{P}(V)$ is the corresponding projective space bundle over $\mathop{\mathrm{Spec}}(k)$. By the discussion above a $k$-valued point $p$ of $\mathbf{P}(V)$ corresponds to a surjection of $k$-vector spaces $V \to L_ p$ with $\dim (L_ p) = 1$. More generally, let $X$ be a scheme over $k$, let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module, and let $\psi : V \to \Gamma (X, \mathcal{L})$ be a $k$-linear map such that $\mathcal{L}$ is generated as an $\mathcal{O}_ X$-module by the sections in the image of $\psi $. Then the discussion above gives a canonical morphism

\[ \varphi _{\mathcal{L}, \psi } : X \longrightarrow \mathbf{P}(V) \]

of schemes over $k$ such that there is an isomorphism $\theta : \varphi _{\mathcal{L}, \psi }^*\mathcal{O}_{\mathbf{P}(V)}(1) \to \mathcal{L}$ and such that $\psi $ agrees with the composition

\[ V \to \Gamma (\mathbf{P}(V), \mathcal{O}_{\mathbf{P}(V)}(1)) \to \Gamma (X, \varphi _{\mathcal{L}, \psi }^*\mathcal{O}_{\mathbf{P}(V)}(1)) \to \Gamma (X, \mathcal{L}) \]

See Lemma 27.14.1. If $V \subset \Gamma (X, \mathcal{L})$ is a subspace, then we will denote the morphism constructed above simply as $\varphi _{\mathcal{L}, V}$. If $\dim (V) = n + 1$ and we choose a basis $v_0, \ldots , v_ n$ of $V$ then the diagram

\[ \xymatrix{ X \ar@{=}[d] \ar[rr]_{\varphi _{\mathcal{L}, \psi }} & & \mathbf{P}(V) \ar[d]^{\cong } \\ X \ar[rr]^{\varphi _{(\mathcal{L}, (s_0, \ldots , s_ n))}} & & \mathbf{P}^ n_ k } \]

is commutative, where $s_ i = \psi (v_ i) \in \Gamma (X, \mathcal{L})$, where $\varphi _{(\mathcal{L}, (s_0, \ldots , s_ n))}$ is as in Section 27.13, and where the right vertical arrow corresponds to the isomorphism $k[T_0, \ldots , T_ n] \to \text{Sym}(V)$ sending $T_ i$ to $v_ i$.

Example 27.21.3. The map $\text{Sym}^ n(\mathcal{E}) \to \pi _*(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n))$ is an isomorphism if $\mathcal{E}$ is locally free, but in general need not be an isomorphism. In fact we will give an example where this map is not injective for $n = 1$. Set $S = \mathop{\mathrm{Spec}}(A)$ with

\[ A = k[u, v, s_1, s_2, t_1, t_2]/I \]

where $k$ is a field and

\[ I = (-us_1 + vt_1 + ut_2, vs_1 + us_2 - vt_2, vs_2, ut_1). \]

Denote $\overline{u}$ the class of $u$ in $A$ and similarly for the other variables. Let $M = (Ax \oplus Ay)/A(\overline{u}x + \overline{v}y)$ so that

\[ \text{Sym}(M) = A[x, y]/(\overline{u}x + \overline{v}y) = k[x, y, u, v, s_1, s_2, t_1, t_2]/J \]

where

\[ J = (-us_1 + vt_1 + ut_2, vs_1 + us_2 - vt_2, vs_2, ut_1, ux + vy). \]

In this case the projective bundle associated to the quasi-coherent sheaf $\mathcal{E} = \widetilde{M}$ on $S = \mathop{\mathrm{Spec}}(A)$ is the scheme

\[ P = \text{Proj}(\text{Sym}(M)). \]

Note that this scheme as an affine open covering $P = D_{+}(x) \cup D_{+}(y)$. Consider the element $m \in M$ which is the image of the element $us_1x + vt_2y$. Note that

\[ x(us_1x + vt_2y) = (s_1x + s_2y)(ux + vy) \bmod I \]

and

\[ y(us_1x + vt_2y) = (t_1x + t_2y)(ux + vy) \bmod I. \]

The first equation implies that $m$ maps to zero as a section of $\mathcal{O}_ P(1)$ on $D_{+}(x)$ and the second that it maps to zero as a section of $\mathcal{O}_ P(1)$ on $D_{+}(y)$. This shows that $m$ maps to zero in $\Gamma (P, \mathcal{O}_ P(1))$. On the other hand we claim that $m \not= 0$, so that $m$ gives an example of a nonzero global section of $\mathcal{E}$ mapping to zero in $\Gamma (P, \mathcal{O}_ P(1))$. Assume $m = 0$ to get a contradiction. In this case there exists an element $f \in k[u, v, s_1, s_2, t_1, t_2]$ such that

\[ us_1x + vt_2y = f(ux + vy) \bmod I \]

Since $I$ is generated by homogeneous polynomials of degree $2$ we may decompose $f$ into its homogeneous components and take the degree 1 component. In other words we may assume that

\[ f = au + bv + \alpha _1s_1 + \alpha _2s_2 + \beta _1t_1 + \beta _2t_2 \]

for some $a, b, \alpha _1, \alpha _2, \beta _1, \beta _2 \in k$. The resulting conditions are that

\[ \begin{matrix} us_1 - u(au + bv + \alpha _1s_1 + \alpha _2s_2 + \beta _1t_1 + \beta _2t_2) \in I \\ vt_2 - v(au + bv + \alpha _1s_1 + \alpha _2s_2 + \beta _1t_1 + \beta _2t_2) \in I \end{matrix} \]

There are no terms $u^2, uv, v^2$ in the generators of $I$ and hence we see $a = b = 0$. Thus we get the relations

\[ \begin{matrix} us_1 - u(\alpha _1s_1 + \alpha _2s_2 + \beta _1t_1 + \beta _2t_2) \in I \\ vt_2 - v(\alpha _1s_1 + \alpha _2s_2 + \beta _1t_1 + \beta _2t_2) \in I \end{matrix} \]

We may use the first generator of $I$ to replace any occurrence of $us_1$ by $vt_1 + ut_2$, the second generator of $I$ to replace any occurrence of $vs_1$ by $-us_2 + vt_2$, the third generator to remove occurrences of $vs_2$ and the third to remove occurrences of $ut_1$. Then we get the relations

\[ \begin{matrix} (1 - \alpha _1)vt_1 + (1 - \alpha _1)ut_2 - \alpha _2us_2 - \beta _2ut_2 = 0 \\ (1 - \alpha _1)vt_2 + \alpha _1us_2 - \beta _1vt_1 - \beta _2vt_2 = 0 \end{matrix} \]

This implies that $\alpha _1$ should be both $0$ and $1$ which is a contradiction as desired.

Lemma 27.21.4. Let $S$ be a scheme. The structure morphism $\mathbf{P}(\mathcal{E}) \to S$ of a projective bundle over $S$ is separated.

Proof. Immediate from Lemma 27.16.9. $\square$

Lemma 27.21.5. Let $S$ be a scheme. Let $n \geq 0$. Then $\mathbf{P}^ n_ S$ is a projective bundle over $S$.

Proof. Note that

\[ \mathbf{P}^ n_{\mathbf{Z}} = \text{Proj}(\mathbf{Z}[T_0, \ldots , T_ n]) = \underline{\text{Proj}}_{\mathop{\mathrm{Spec}}(\mathbf{Z})} \left(\widetilde{\mathbf{Z}[T_0, \ldots , T_ n]}\right) \]

where the grading on the ring $\mathbf{Z}[T_0, \ldots , T_ n]$ is given by $\deg (T_ i) = 1$ and the elements of $\mathbf{Z}$ are in degree $0$. Recall that $\mathbf{P}^ n_ S$ is defined as $\mathbf{P}^ n_{\mathbf{Z}} \times _{\mathop{\mathrm{Spec}}(\mathbf{Z})} S$. Moreover, forming the relative homogeneous spectrum commutes with base change, see Lemma 27.16.10. For any scheme $g : S \to \mathop{\mathrm{Spec}}(\mathbf{Z})$ we have $g^*\mathcal{O}_{\mathop{\mathrm{Spec}}(\mathbf{Z})}[T_0, \ldots , T_ n] = \mathcal{O}_ S[T_0, \ldots , T_ n]$. Combining the above we see that

\[ \mathbf{P}^ n_ S = \underline{\text{Proj}}_ S(\mathcal{O}_ S[T_0, \ldots , T_ n]). \]

Finally, note that $\mathcal{O}_ S[T_0, \ldots , T_ n] = \text{Sym}(\mathcal{O}_ S^{\oplus n + 1})$. Hence we see that $\mathbf{P}^ n_ S$ is a projective bundle over $S$. $\square$

[1] The reader may expect here the condition that $\mathcal{E}$ is finite locally free. We do not do so in order to be consistent with [II, Definition 4.1.1, EGA].

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01OA. Beware of the difference between the letter 'O' and the digit '0'.