The Stacks project

Lemma 27.15.5. In Situation 27.15.1. The morphism $\pi : \underline{\text{Proj}}_ S(\mathcal{A}) \to S$ of Lemma 27.15.4 comes with the following additional structure. There exists a quasi-coherent $\mathbf{Z}$-graded sheaf of $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}$-algebras $\bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)$, and a morphism of graded $\mathcal{O}_ S$-algebras

\[ \psi : \mathcal{A} \longrightarrow \bigoplus \nolimits _{n \geq 0} \pi _*\left(\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)\right) \]

uniquely determined by the following property: For every affine open $U \subset S$ with $A = \mathcal{A}(U)$ there is an isomorphism

\[ \theta _ U : i_ U^*\left( \bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{O}_{\text{Proj}(A)}(n) \right) \longrightarrow \left( \bigoplus \nolimits _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n) \right)|_{\pi ^{-1}(U)} \]

of $\mathbf{Z}$-graded $\mathcal{O}_{\pi ^{-1}(U)}$-algebras such that

\[ \xymatrix{ A_ n \ar[rr]_\psi \ar[dr]_-{(01MP)} & & \Gamma (\pi ^{-1}(U), \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)) \\ & \Gamma (\text{Proj}(A), \mathcal{O}_{\text{Proj}(A)}(n)) \ar[ru]_-{\theta _ U} & } \]

is commutative.

Proof. We are going to use Lemma 27.2.2 to glue the sheaves of $\mathbf{Z}$-graded algebras $\bigoplus _{n \in \mathbf{Z}} \mathcal{O}_{\text{Proj}(A)}(n)$ for $A = \mathcal{A}(U)$, $U \subset S$ affine open over the scheme $\underline{\text{Proj}}_ S(\mathcal{A})$. We have constructed the data necessary for this in Lemma 27.15.2 and we have checked condition (d) of Lemma 27.2.2 in Lemma 27.15.3. Hence we get the sheaf of $\mathbf{Z}$-graded $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}$-algebras $\bigoplus _{n \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)$ together with the isomorphisms $\theta _ U$ for all $U \subset S$ affine open and all $n \in \mathbf{Z}$. For every affine open $U \subset S$ with $A = \mathcal{A}(U)$ we have a map $A \to \Gamma (\text{Proj}(A), \bigoplus _{n \geq 0} \mathcal{O}_{\text{Proj}(A)}(n))$. Hence the map $\psi $ exists by functoriality of relative glueing, see Remark 27.2.3. The diagram of the lemma commutes by construction. This characterizes the sheaf of $\mathbf{Z}$-graded $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}$-algebras $\bigoplus \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(n)$ because the proof of Lemma 27.11.1 shows that having these diagrams commute uniquely determines the maps $\theta _ U$. Some details omitted. $\square$


Comments (2)

Comment #7952 by Raffaele Lamagna on

in the commutative diagram is not defined.

Comment #8189 by on

It is defined in the sense that is a graded ring and is the th graded part of this ring.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01NR. Beware of the difference between the letter 'O' and the digit '0'.