Lemma 27.17.1. In Situation 27.15.1. For any quasi-coherent sheaf of graded $\mathcal{A}$-modules $\mathcal{M}$ on $S$, there exists a canonical associated sheaf of $\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}$-modules $\widetilde{\mathcal{M}}$ with the following properties:
Given a scheme $T$ and a quadruple $(T \to S, d, \mathcal{L}, \psi )$ over $T$ corresponding to a morphism $h : T \to \underline{\text{Proj}}_ S(\mathcal{A})$ there is a canonical isomorphism $\widetilde{\mathcal{M}}_ T = h^*\widetilde{\mathcal{M}}$ where $\widetilde{\mathcal{M}}_ T$ is defined by (27.17.0.1).
The isomorphisms of (1) are compatible with pullbacks.
There is a canonical map
\[ \pi ^*\mathcal{M}_0 \longrightarrow \widetilde{\mathcal{M}}. \]The construction $\mathcal{M} \mapsto \widetilde{\mathcal{M}}$ is functorial in $\mathcal{M}$.
The construction $\mathcal{M} \mapsto \widetilde{\mathcal{M}}$ is exact.
There are canonical maps
\[ \widetilde{\mathcal{M}} \otimes _{\mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}} \widetilde{\mathcal{N}} \longrightarrow \widetilde{\mathcal{M} \otimes _\mathcal {A} \mathcal{N}} \]as in Lemma 27.9.1.
There exist canonical maps
\[ \pi ^*\mathcal{M} \longrightarrow \bigoplus \nolimits _{n \in \mathbf{Z}} \widetilde{\mathcal{M}(n)} \]generalizing (27.10.1.6).
The formation of $\widetilde{\mathcal{M}}$ commutes with base change.
Comments (0)
There are also: