The Stacks project

Lemma 27.9.1. Let $S$ be a graded ring. Let $(X, \mathcal{O}_ X) = (\text{Proj}(S), \mathcal{O}_{\text{Proj}(S)})$ be the scheme of Lemma 27.8.7. Let $f \in S_{+}$ be homogeneous. Let $x \in X$ be a point corresponding to the homogeneous prime $\mathfrak p \subset S$. Let $M$, $N$ be graded $S$-modules. There is a canonical map of $\mathcal{O}_{\text{Proj}(S)}$-modules

\[ \widetilde M \otimes _{\mathcal{O}_ X} \widetilde N \longrightarrow \widetilde{M \otimes _ S N} \]

which induces the canonical map $ M_{(f)} \otimes _{S_{(f)}} N_{(f)} \to (M \otimes _ S N)_{(f)} $ on sections over $D_{+}(f)$ and the canonical map $ M_{(\mathfrak p)} \otimes _{S_{(\mathfrak p)}} N_{(\mathfrak p)} \to (M \otimes _ S N)_{(\mathfrak p)} $ on stalks at $x$. Moreover, the following diagram

\[ \xymatrix{ M_0 \otimes _{S_0} N_0 \ar[r] \ar[d] & (M \otimes _ S N)_0 \ar[d] \\ \Gamma (X, \widetilde M \otimes _{\mathcal{O}_ X} \widetilde N) \ar[r] & \Gamma (X, \widetilde{M \otimes _ S N}) } \]

is commutative where the vertical maps are given by (27.9.0.1).

Proof. To construct a morphism as displayed is the same as constructing a $\mathcal{O}_ X$-bilinear map

\[ \widetilde M \times \widetilde N \longrightarrow \widetilde{M \otimes _ S N} \]

see Modules, Section 17.16. It suffices to define this on sections over the opens $D_{+}(f)$ compatible with restriction mappings. On $D_{+}(f)$ we use the $S_{(f)}$-bilinear map $M_{(f)} \times N_{(f)} \to (M \otimes _ S N)_{(f)}$, $(x/f^ n, y/f^ m) \mapsto (x \otimes y)/f^{n + m}$. Details omitted. $\square$


Comments (0)

There are also:

  • 5 comment(s) on Section 27.9: Quasi-coherent sheaves on Proj

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01MK. Beware of the difference between the letter 'O' and the digit '0'.