Remark 25.9.3. Note that the crux of the proof is to use Lemma 25.8.2. This lemma is completely general and does not care about the exact shape of the simplicial sets (as long as they have only finitely many nondegenerate simplices). It seems altogether reasonable to expect a result of the following kind: Given any morphism $a : K \times \partial \Delta [k] \to L$, with $K$ and $L$ hypercoverings, there exists a morphism of hypercoverings $c : K' \to K$ and a morphism $g : K' \times \Delta [k] \to L$ such that $g|_{K' \times \partial \Delta [k]} = a \circ (c \times \text{id}_{\partial \Delta [k]})$. In other words, the category of hypercoverings is in a suitable sense contractible.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)